Skip to main content
Log in

Pharmacokinetics and Pharmacodynamic of Alpelisib

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Advanced breast cancers are frequently hormone receptor (HR)-positive and human epidermal growth factor receptor 2 (HER2)-negative. Some of them harbor a mutation in PIK3CA, a gene encoding the PI3K catalytic subunit α of phosphatidyl-inositol 3-kinase (PI3K), which confers resistance to hormone therapy. Alpelisib is the first oral selective p110 \(\alpha\) PI3K inhibitor approved by FDA and EMA, in association with fulvestrant, based on PFS improvement as compared to fulvestrant alone. The aim of this review is to summarize and critically review the key aspects of alpelisib pharmacokinetics (PK) and pharmacodynamics (PD). Preclinical data have shown that alpelisib IC50 was 50 times lower for the α enzyme than for the β, δ and γ PI3K enzymes, leading to a decrease in intra-tumoral AKT phosphorylation. The PK properties of alpelisib are somehow favorable, with a rapid and important absorption, a limited CYP P450-mediated metabolism and a predominant biliary excretion, with a half-life of 17.5 ± 5.9 h. Only limited drug–drug interactions are expected and there is no need for dose adaptation in mild and moderate renal impaired and mild to severe hepatic impaired patients. Pharmacokinetic/pharmacodynamic relationships were evidenced during drug development for exposure/efficacy, but also exposure/safety. Main adverse events are hyperglycemia, rash, and diarrhea. The first, if not fully contra-indicated in (pre-)diabetic patients, warrants a close follow up when treatment is started and a potential dose reduction when needed. Because of its safety profile, alpelisib require stringent patient selection and close follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Xia P, Xu X-Y. PI3K/Akt/mTOR signaling pathway in cancer stem cells: from basic research to clinical application. Am J Cancer Res. 2015;5:1602–9.

    Google Scholar 

  2. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.

    Article  CAS  Google Scholar 

  3. Thorpe LM, Spangle JM, Ohlson CE, Cheng H, Roberts TM, Cantley LC, et al. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc Natl Acad Sci USA. 2017;114:7095–100.

    Article  CAS  Google Scholar 

  4. Mollon LE, Anderson EJ, Dean JL, Warholak TL, Aizer A, Platt EA, et al. A systematic literature review of the prognostic and predictive value of PIK3CA mutations in HR+/HER2− metastatic breast cancer. Clin Breast Cancer. 2020;20:e232–43.

    Article  CAS  Google Scholar 

  5. Bader AG, Kang S, Zhao L, Vogt PK. Oncogenic PI3K deregulates transcription and translation. Nat Rev Cancer. 2005;5:921–9.

    Article  CAS  Google Scholar 

  6. Bergholz JS, Roberts TM, Zhao JJ. Isoform-selective phosphatidylinositol 3-kinase inhibition in cancer. J Clin Oncol. 2018;36:1339–42.

    Article  CAS  Google Scholar 

  7. Graupera M, Guillermet-Guibert J, Foukas LC, Phng L-K, Cain RJ, Salpekar A, et al. Angiogenesis selectively requires the p110alpha isoform of PI3K to control endothelial cell migration. Nature. 2008;453:662–6.

    Article  CAS  Google Scholar 

  8. Cerami E, Gao J, Dogrusoz U, Gross BE, Sumer SO, Aksoy BA, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4.

    Article  Google Scholar 

  9. Forbes SA, Beare D, Gunasekaran P, Leung K, Bindal N, Boutselakis H, et al. COSMIC: exploring the world’s knowledge of somatic mutations in human cancer. Nucleic Acids Res. 2015;43:D805-811.

    Article  CAS  Google Scholar 

  10. Mosele F, Stefanovska B, Lusque A, Tran Dien A, Garberis I, Droin N, et al. Outcome and molecular landscape of patients with PIK3CA-mutated metastatic breast cancer. Ann Oncol. 2020;31:377–86.

    Article  CAS  Google Scholar 

  11. Chen L, Yang L, Yao L, Kuang X-Y, Zuo W-J, Li S, et al. Characterization of PIK3CA and PIK3R1 somatic mutations in Chinese breast cancer patients. Nat Commun. 2018;9:1357.

    Article  Google Scholar 

  12. McCubrey JA, Steelman LS, Abrams SL, Lee JT, Chang F, Bertrand FE, et al. Roles of the RAF/MEK/ERK and PI3K/PTEN/AKT pathways in malignant transformation and drug resistance. Adv Enzyme Regul. 2006;46:249–79.

    Article  CAS  Google Scholar 

  13. Gennari A, André F, Barrios CH, Cortés J, de Azambuja E, DeMichele A, et al. ESMO clinical practice guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol. 2021;32:1475–95.

    Article  CAS  Google Scholar 

  14. André F, Ciruelos E, Rubovszky G, Campone M, Loibl S, Rugo HS, et al. Alpelisib for PIK3CA-mutated, hormone receptor-positive advanced breast cancer. N Engl J Med. 2019;380:1929–40.

    Article  Google Scholar 

  15. Baselga J, Im S-A, Iwata H, Cortés J, De Laurentiis M, Jiang Z, et al. Buparlisib plus fulvestrant versus placebo plus fulvestrant in postmenopausal, hormone receptor-positive, HER2-negative, advanced breast cancer (BELLE-2): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2017;18:904–16.

    Article  CAS  Google Scholar 

  16. Wilhoit T, Patrick JM, May MB. Alpelisib: a novel therapy for patients with PIK3CA-mutated metastatic breast cancer. J Adv Pract Oncol. 2020;11:768–75.

    Google Scholar 

  17. André F, Ciruelos EM, Juric D, Loibl S, Campone M, Mayer IA, et al. Alpelisib plus fulvestrant for PIK3CA-mutated, hormone receptor-positive, human epidermal growth factor receptor-2-negative advanced breast cancer: final overall survival results from SOLAR-1. Ann Oncol Elsevier. 2021;32:208–17.

    Article  Google Scholar 

  18. Rugo HS, André F, Yamashita T, Cerda H, Toledano I, Stemmer SM, et al. Time course and management of key adverse events during the randomized phase III SOLAR-1 study of PI3K inhibitor alpelisib plus fulvestrant in patients with HR-positive advanced breast cancer. Ann Oncol. 2020;31:1001–10.

    Article  CAS  Google Scholar 

  19. FDA, editor. NDA/BLA multi-disciplinary review and evaluation {NDA 212526} {PIQRAY, Alpelisib} [Internet]. 2018. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/212526Orig1s000MultidisciplineR.pdf

  20. Juric D, Rodon J, Tabernero J, Janku F, Burris HA, Schellens JHM, et al. Phosphatidylinositol 3-kinase α-selective inhibition with alpelisib (BYL719) in PIK3CA-altered solid tumors: results from the first-in-human study. JCO. 2018;36:1291–9.

    Article  CAS  Google Scholar 

  21. Vasan N, Toska E, Scaltriti M. Overview of the relevance of PI3K pathway in HR-positive breast cancer. Ann Oncol. 2019;30:x3-11.

    Article  CAS  Google Scholar 

  22. Akinleye A, Avvaru P, Furqan M, Song Y, Liu D. Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol. 2013;6:88.

    Article  Google Scholar 

  23. Furet P, Guagnano V, Fairhurst RA, Imbach-Weese P, Bruce I, Knapp M, et al. Discovery of NVP-BYL719 a potent and selective phosphatidylinositol-3 kinase alpha inhibitor selected for clinical evaluation. Bioorg Med Chem Lett. 2013;23:3741–8.

    Article  CAS  Google Scholar 

  24. Fritsch C, Huang A, Chatenay-Rivauday C, Schnell C, Reddy A, Liu M, et al. Characterization of the novel and specific PI3Kα inhibitor NVP-BYL719 and development of the patient stratification strategy for clinical trials. Mol Cancer Ther. 2014;13:1117–29.

    Article  CAS  Google Scholar 

  25. Bosch A, Li Z, Bergamaschi A, Ellis H, Toska E, Prat A, et al. PI3K inhibition results in enhanced estrogen receptor function and dependence in hormone receptor–positive breast cancer. Sci Transl Med [Internet]. 2015 [cited 2022 Aug 23];7. Available from: https://www.science.org/doi/10.1126/scitranslmed.aaa4442.

  26. EMA, editor. EMA Piqray Assessment report—EMA/CHMP/321881/2020 [Internet]. 2020. Available from: https://www.ema.europa.eu/en/documents/assessment-report/piqray-epar-public-assessment-report_en.pdf.

  27. James A, Blumenstein L, Glaenzel U, Jin Y, Demailly A, Jakab A, et al. Absorption, distribution, metabolism, and excretion of [14C]BYL719 (alpelisib) in healthy male volunteers. Cancer Chemother Pharmacol. 2015;76:751–60.

    Article  CAS  Google Scholar 

  28. Curigliano G, Martin M, Jhaveri K, Beck JT, Tortora G, Fazio N, et al. Alpelisib in combination with everolimus ± exemestane in solid tumours: phase Ib randomised, open-label, multicentre study. Eur J Cancer. 2021;151:49–62.

    Article  CAS  Google Scholar 

  29. van Geel RMJM, Tabernero J, Elez E, Bendell JC, Spreafico A, Schuler M, et al. A phase Ib dose-escalation study of encorafenib and cetuximab with or without alpelisib in metastatic BRAF-mutant colorectal cancer. Cancer Discov. 2017;7:610–9.

    Article  Google Scholar 

  30. Ando Y, Iwasa S, Takahashi S, Saka H, Kakizume T, Natsume K, et al. Phase I study of alpelisib (BYL719), an α-specific PI3K inhibitor, in Japanese patients with advanced solid tumors. Cancer Sci. 2019;110:1021–31.

    Article  CAS  Google Scholar 

  31. Hyman DM, Tran B, Paz-Ares L, Machiels JP, Schellens JH, Bedard PL, et al. Combined PIK3CA and FGFR inhibition with Alpelisib and Infigratinib in patients with PIK3CA-Mutant solid tumors, with or without FGFR alterations. JCO Precis Oncol. 2019;3:1–13. https://doi.org/10.1200/PO.19.00221.

  32. Juric D, Janku F, Rodón J, Burris HA, Mayer IA, Schuler M, et al. Alpelisib plus fulvestrant in PIK3CA-altered and PIK3CA-wild-type estrogen receptor-positive advanced breast cancer: a phase 1b clinical trial. JAMA Oncol. 2019;5: e184475.

    Article  Google Scholar 

  33. Gajewska M, Blumenstein L, Kourentas A, Mueller-Zsigmondy M, Lorenzo S, Sinn A, et al. Physiologically based pharmacokinetic modeling of oral absorption, pH, and food effect in healthy volunteers to drive alpelisib formulation selection. AAPS J. 2020;22:134.

    Article  CAS  Google Scholar 

  34. Shoushtari AN, Khan S, Komatsubara K, Feun L, Acquavella N, Singh-Kandah S, et al. A phase Ib study of sotrastaurin, a PKC inhibitor, and alpelisib, a PI3Kα inhibitor, in patients with metastatic uveal melanoma. Cancers. 2021;13:5504.

    Article  CAS  Google Scholar 

  35. Morin G, Degrugillier-Chopinet C, Vincent M, Fraissenon A, Aubert H, Chapelle C, et al. Treatment of two infants with PIK3CA-related overgrowth spectrum by alpelisib. J Exp Med. 2022;219: e20212148.

    Article  CAS  Google Scholar 

  36. De Buck SS, Jakab A, Boehm M, Bootle D, Juric D, Quadt C, et al. Population pharmacokinetics and pharmacodynamics of BYL719, a phosphoinositide 3-kinase antagonist, in adult patients with advanced solid malignancies: population pharmacokinetics and pharmacodynamics of BYL719. Br J Clin Pharmacol. 2014;78:543–55.

    Article  Google Scholar 

  37. Jhaveri K, Juric D, Yap Y-S, Cresta S, Layman RM, Duhoux FP, et al. A phase I study of LSZ102, an oral selective estrogen receptor degrader, with or without ribociclib or alpelisib, in patients with estrogen receptor-positive breast cancer. Clin Cancer Res. 2021;27:5760–70.

    Article  CAS  Google Scholar 

  38. Research C for DE and. FDA approves alpelisib for PIK3CA-related overgrowth spectrum. FDA [Internet]. FDA; 2022 [cited 2022 Aug 23]; Available from: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-alpelisib-pik3ca-related-overgrowth-spectrum.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonin Schmitt.

Ethics declarations

Funding

This research received no external funding.

Conflict of interest

The authors declare no conflict of interest.

Data availability

Not applicable.

Code availability

Not applicable.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Author contributions

Writing—original draft preparation, BR, CGK, and AS; writing—review and editing, AS; supervision, AS. All authors have read and agreed to the published version of the manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Royer, B., Kaderbhaï, C.G. & Schmitt, A. Pharmacokinetics and Pharmacodynamic of Alpelisib. Clin Pharmacokinet 62, 45–53 (2023). https://doi.org/10.1007/s40262-022-01195-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-022-01195-2

Navigation