Skip to main content
Log in

Fetal Physiologically Based Pharmacokinetic Models: Systems Information on Fetal Blood Components and Binding Proteins

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background

Fetal blood and plasma volume and binding components are critical parameters in a fetal physiologically based pharmacokinetic model. To date, a comprehensive review of their changes during fetal development has not been reported.

Objective

The objective of this work was to collate and analyze physiological information on fetal blood and plasma volume and binding component data during development and to provide a mathematical description of these parameters that can be integrated within a fetal physiologically based pharmacokinetic model.

Methods

A comprehensive literature search was conducted on fetal blood and plasma volume and binding component parameters and their changes during growth from apparently healthy fetuses from uncomplicated pregnancies. Collated data were assessed, integrated, and analyzed to establish continuous mathematical functions describing their growth trends with fetal age and weight.

Results

Data were available from 14 studies for blood, ten studies for hematocrit, 12 studies for albumin, and four studies for alpha-1-acid glycoprotein, while plasma and red blood cell volumes were described based on blood and hematocrit data. Fetal physiologically based pharmacokinetic parameters, including blood, plasma and red blood cell volumes, hematocrit, serum albumin, and acid glycoprotein were quantified as a function of fetal age and weight. Variability around the mean parameters at different fetal ages was also investigated. The growth of each of these parameters was different (with respect to direction and monotonicity).

Conclusions

Despite the limitations identified in the availability of some values, the collected data presented in this article provide a useful resource for fetal physiologically based pharmacokinetic modeling. Potential applications include predicting xenobiotic exposure and risk assessment in the fetus following maternally administered drugs or unintended exposure to environmental toxicants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schalkwijk S, Buaben AO, Freriksen JJM, Colbers AP, Burger DM, Greupink R, et al. Prediction of fetal darunavir exposure by integrating human ex-vivo placental transfer and physiologically based pharmacokinetic modeling. Clin Pharmacokinet. 2018;57:705–16.

    CAS  PubMed  Google Scholar 

  2. Koren G, Ornoy A. The role of the placenta in drug transport and fetal drug exposure. Expert Rev Clin Pharmacol. 2018;11:373–85.

    CAS  PubMed  Google Scholar 

  3. De Sousa Mendes M, Lui G, Zheng Y, Pressiat C, Hirt D, Valade E, et al. A physiologically-based pharmacokinetic model to predict human fetal exposure for a drug metabolized by several CYP450 pathways. Clin Pharmacokinet. 2017;56:537–50.

    Google Scholar 

  4. Zhang Z, Unadkat JD. Development of a novel maternal-fetal physiologically based pharmacokinetic model II: verification of the model for passive placental permeability drugs. Drug Metab Dispos. 2017;45:939–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Yoon M, Schroeter JD, Nong A, Taylor MD, Dorman DC, Andersen ME, et al. Physiologically based pharmacokinetic modeling of fetal and neonatal manganese exposure in humans: describing manganese homeostasis during development. Toxicol Sci. 2011;122:297–316.

    CAS  PubMed  Google Scholar 

  6. Papantoniou N, Ismailos G, Daskalakis G, Karabinas C, Mesogitis S, Papapanagiotou A, et al. Pharmacokinetics of oral cefatrizine in pregnant and non-pregnant women with reference to fetal distribution. Fetal Diagn Ther. 2007;22:100–6.

    CAS  PubMed  Google Scholar 

  7. Luecke RH, Wosilait WD, Pearce BA, Young JF. A physiologically based pharmacokinetic computer model for human pregnancy. Teratology. 1994;49:90–103.

    CAS  PubMed  Google Scholar 

  8. Abduljalil K, Furness P, Johnson TN, Rostami-Hodjegan A, Soltani H. Anatomical, physiological and metabolic changes with gestational age during normal pregnancy: a database for parameters required in physiologically based pharmacokinetic modelling. Clin Pharmacokinet. 2012;51:365–96.

    CAS  PubMed  Google Scholar 

  9. Young JF, Branham WS, Sheehan DM, Baker ME, Wosilait WD, Luecke RH. Physiological “constants” for PBPK models for pregnancy. J Toxicol Environ Health. 1997;52:385–401.

    CAS  PubMed  Google Scholar 

  10. Lu G, Abduljalil K, Jamei M, Johnson TN, Soltani H, Rostami-Hodjegan A. Physiologically-based pharmacokinetic (PBPK) models for assessing the kinetics of xenobiotics during pregnancy: achievements and shortcomings. Curr Drug Metab. 2012;13:695–720.

    CAS  PubMed  Google Scholar 

  11. Gentry PR, Covington TR, Clewell HJ 3rd. Evaluation of the potential impact of pharmacokinetic differences on tissue dosimetry in offspring during pregnancy and lactation. Regul Toxicol Pharmacol. 2003;38:1–16.

    CAS  PubMed  Google Scholar 

  12. Gaohua L, Abduljalil K, Jamei M, Johnson TN, Rostami-Hodjegan A. A pregnancy physiologically based pharmacokinetic (p-PBPK) model for disposition of drugs metabolized by CYP1A2, CYP2D6 and CYP3A4. Br J Clin Pharmacol. 2012;74:873–85.

    PubMed  PubMed Central  Google Scholar 

  13. Corley RA, Mast TJ, Carney EW, Rogers JM, Daston GP. Evaluation of physiologically based models of pregnancy and lactation for their application in children’s health risk assessments. Crit Rev Toxicol. 2003;33:137–211.

    CAS  PubMed  Google Scholar 

  14. Andrew MA, Hebert MF, Vicini P. Physiologically based pharmacokinetic model of midazolam disposition during pregnancy. In: Conf Proc IEEE Eng Med Biol Soc. 2008. p. 5454–7.

  15. Ke AB, Rostami-Hodjegan A, Zhao P, Unadkat JD. Pharmacometrics in pregnancy: an unmet need. Annu Rev Pharmacol Toxicol. 2014;54:53–69.

    CAS  PubMed  Google Scholar 

  16. Johnson RF, Herman NL, Johnson HV, Arney TL, Paschall RL, Downing JW. Effects of fetal pH on local anesthetic transfer across the human placenta. Anesthesiology. 1996;85:608–15.

    CAS  PubMed  Google Scholar 

  17. Savona-Ventura C, Sammut M, Sammut C. Pethidine blood concentrations at time of birth. Int J Gynaecol Obstet. 1991;36:103–7.

    CAS  PubMed  Google Scholar 

  18. Rothberg RM, Rieger CH, Hill JH, Danielson J, Matadial L. Cord and maternal serum meperidine concentrations and clinical status of the infant. Biol Neonate. 1978;33:80–9.

    PubMed  Google Scholar 

  19. Sachdeva P, Patel BG, Patel BK. Drug use in pregnancy; a point to ponder! Indian J Pharm Sci. 2009;71:1–7.

    PubMed  PubMed Central  Google Scholar 

  20. Colbers A, Greupink R, Burger D. Pharmacological considerations on the use of antiretrovirals in pregnancy. Curr Opin Infect Dis. 2013;26:575–88.

    CAS  PubMed  Google Scholar 

  21. Cox PB, Marcus MA, Bos H. Pharmacological considerations during pregnancy. Curr Opin Anaesthesiol. 2001;14:311–6.

    CAS  PubMed  Google Scholar 

  22. Abduljalil K, Johnson TN, Rostami-Hodjegan A. Fetal physiologically-based pharmacokinetic models: systems information on fetal biometry and gross composition. Clin Pharmacokinet. 2018;57:1149–71.

    PubMed  Google Scholar 

  23. Abduljalil K, Jamei M, Johnson TN. Fetal Physiologically based pharmacokinetic models: systems information on the growth and composition of fetal organs. Clin Pharmacokinet. 2019;58:235–62.

    CAS  PubMed  Google Scholar 

  24. Silverwood RJ, Cole TJ. Statistical methods for constructing gestational age-related reference intervals and centile charts for fetal size. Ultrasound Obstet Gynecol. 2007;29:6–13.

    CAS  PubMed  Google Scholar 

  25. Blackburn ST. Maternal, fetal and neonatal physiology: a clinical perspective. 3rd ed. Philadelphia (PA): Saunders Elsevier; 2007.

    Google Scholar 

  26. de Alarcon P, Werner E. Neonatal hematology. Cambridge: Cambridge University Press; 2005.

    Google Scholar 

  27. Palis J, Segel GB. Developmental biology of erythropoiesis. Blood Rev. 1998;12:106–14.

    CAS  PubMed  Google Scholar 

  28. Moore KL, Persaud TVN, Torchia MG. The developing human: clinically oriented embryology. 9th ed. Philadelphia: Saunders, Elsevier; 2013.

    Google Scholar 

  29. Ohls RK. Erythropoietin treatment in extremely low birth weight infants: blood in versus blood out. J Pediatr. 2002;141:3–6.

    PubMed  Google Scholar 

  30. McDonald SJ, Middleton P, Dowswell T, Morris PS. Effect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev. 2013;7:CD004074.

  31. Yao AC, Moinian M, Lind J. Distribution of blood between infant and placenta after birth. Lancet. 1969;2:871–3.

    CAS  PubMed  Google Scholar 

  32. Yagel S, Silverman NH, Ulrich Gembruch U. Fetal cardiography: embryology, genetics, physiology, echocardiographic evaluation, diagnosis and perinatal management of cardiac diseases. London: Martin Dunitz, Taylor & Francis Group; 2003.

    Google Scholar 

  33. Aladangady N, McHugh S, Aitchison TC, Wardrop CA, Holland BM. Infants’ blood volume in a controlled trial of placental transfusion at preterm delivery. Pediatrics. 2006;117:93–8.

    PubMed  Google Scholar 

  34. Linderkamp O. Placental transfusion: determinants and effects. Clin Perinatol. 1982;9:559–92.

    CAS  PubMed  Google Scholar 

  35. Sisson TR, Whalen LE. The blood volume of infants. J Pediatr. 1960;56:43–7.

    CAS  PubMed  Google Scholar 

  36. Pasman SA, van den Brink CP, Kamping MA, Adama van Scheltema PN, Oepkes D, Vandenbussche FP. Total blood volume is maintained in nonhydropic fetuses with severe hemolytic anemia. Fetal Diagn Ther. 2009;26:10–5.

  37. Mollison PL, Veall N, Cutbush M. Red cell and plasma volume in newborn infants. Arch Dis Child. 1950;25:242–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Nicolaides KH, Economides DL, Soothill PW. Blood gases, pH, and lactate in appropriate- and small-for-gestational-age fetuses. Am J Obstet Gynecol. 1989;161:996–1001.

    CAS  PubMed  Google Scholar 

  39. Berrebi A, Benichou AC, Sarramon MF, Bessieres MH, Rolland M, Kobuch WE, et al. Biological reference values in the human fetus. 106 cord blood sampling in utero. J Gynecol Obstet Biol Reprod (Paris). 1992;21:355–9.

  40. Nava S, Bocconi L, Zuliani G, Kustermann A, Nicolini U. Aspects of fetal physiology from 18 to 37 weeks’ gestation as assessed by blood sampling. Obstet Gynecol. 1996;87:975–80.

    CAS  PubMed  Google Scholar 

  41. International Commission on Radiological Protection. Report of the Task Group on Reference Man. ICRP Publication 23. Oxford: Pergamon Press; 1975.

  42. White DR, Widdowson EM, Woodard HQ, Dickerson JW. The composition of body tissues (II): fetus to young adult. Br J Radiol. 1991;64:149–59.

    CAS  PubMed  Google Scholar 

  43. Hoffman R, Benz EJ, Silberstein LE, Heslop H, Weitz J, Anastasi J. Hematology: basic principles and practice. 6th ed. New York: Churchill Livingstone Inc., Elsevier; 2013.

    Google Scholar 

  44. Jopling J, Henry E, Wiedmeier SE, Christensen RD. Reference ranges for hematocrit and blood hemoglobin concentration during the neonatal period: data from a multihospital health care system. Pediatrics. 2009;123:e333–7.

    PubMed  Google Scholar 

  45. Saigal S, O’Neill A, Surainder Y, Chua LB, Usher R. Placental transfusion and hyperbilirubinemia in the premature. Pediatrics. 1972;49:406–19.

    CAS  PubMed  Google Scholar 

  46. Linderkamp O, Versmold HT, Riegel KP, Betke K. Estimation and prediction of blood volume in infants and children. Eur J Pediatr. 1977;125:227–34.

    CAS  PubMed  Google Scholar 

  47. Basic anatomical and physiological data for use in radiological protection: reference values. A report of age- and gender-related differences in the anatomical and physiological characteristics of reference individuals. ICRP Publication 89. Ann ICRP. 2002;32(3–4):5–265.

  48. Bardy AH, Hiilesmaa VK, Teramo K, Neuvonen PJ. Protein binding of antiepileptic drugs during pregnancy, labor, and puerperium. Ther Drug Monit. 1990;12:40–6.

    CAS  PubMed  Google Scholar 

  49. Belpaire FM, Wynant P, Van Trappen P, Dhont M, Verstraete A, Bogaert MG. Protein binding of propranolol and verapamil enantiomers in maternal and foetal serum. Br J Clin Pharmacol. 1995;39:190–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Krauer B, Dayer P, Anner R. Changes in serum albumin and alpha 1-acid glycoprotein concentrations during pregnancy: an analysis of fetal-maternal pairs. Br J Obstet Gynaecol. 1984;91:875–81.

    CAS  PubMed  Google Scholar 

  51. Andreoli M, Robbins J. Serum proteins and thyroxineprotein interaction in early human fetuses. J Clin Invest. 1962;41:1070–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hadlock FP, Shah YP, Kanon DJ, Lindsey JV. Fetal crown-rump length: reevaluation of relation to menstrual age (5-18 weeks) with high-resolution real-time US. Radiology. 1992;182:501–5.

    CAS  PubMed  Google Scholar 

  53. Moniz CF, Nicolaides KH, Bamforth FJ, Rodeck CH. Normal reference ranges for biochemical substances relating to renal, hepatic, and bone function in fetal and maternal plasma throughout pregnancy. J Clin Pathol. 1985;38:468–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Gitlin D, Kumate J, Urrusti J, Morales C. The selectivity of the human placenta in the transfer of plasma proteins from mother to fetus. J Clin Invest. 1964;43:1938–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Dancis J, Braverman N, Lind J. Plasma protein synthesis in the human fetus and placenta. J Clin Invest. 1957;36:398–404.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. van den Akker CH, Schierbeek H, Rietveld T, Vermes A, Duvekot JJ, Steegers EA, et al. Human fetal albumin synthesis rates during different periods of gestation. Am J Clin Nutr. 2008;88:997–1003.

    PubMed  Google Scholar 

  57. Perkins SL, Livesey JF, Belcher J. Reference intervals for 21 clinical chemistry analytes in arterial and venous umbilical cord blood. Clin Chem. 1993;39:1041–4.

    CAS  PubMed  Google Scholar 

  58. Seta N, Tissot B, Forestier F, Feger J, Daffos F, Durand G. Changes in alpha 1-acid glycoprotein serum concentrations and glycoforms in the developing human fetus. Clin Chim Acta. 1991;203:167–75.

    CAS  PubMed  Google Scholar 

  59. Mandelbrot L, Daffos F, Forestier F, MacAleese J, Descombey D. Assessment of fetal blood volume for computer-assisted management of in utero transfusion. Fetal Ther. 1988;3:60–6.

    CAS  PubMed  Google Scholar 

  60. Leduc L, Moise KJ Jr, Carpenter RJ Jr, Cano LE. Fetoplacental blood volume estimation in pregnancies with Rh alloimmunization. Fetal Diagn Ther. 1990;5:138–46.

    CAS  PubMed  Google Scholar 

  61. MacGregor SN, Socol ML, Pielet BW, Sholl JT, Minogue JP. Prediction of fetoplacental blood volume in isoimmunized pregnancy. Am J Obstet Gynecol. 1988;159:1493–7.

    CAS  PubMed  Google Scholar 

  62. Smith GC, Cameron AD. Estimating human fetal blood volume on the basis of gestational age and fetal abdominal circumference. BJOG. 2002;109:721–2.

    PubMed  Google Scholar 

  63. Abbasi N, Johnson J-A, Ryan G. Fetal anemia. Ultrasound Obstet Gynecol. 2017;50:145–53.

    CAS  PubMed  Google Scholar 

  64. Nicolini U, Nicolaidis P, Tannirandorn Y, Fisk NM, Nasrat H, Rodeck CH. Fetal liver dysfunction in Rh alloimmunization. Br J Obstet Gynaecol. 1991;98:287–93.

    CAS  PubMed  Google Scholar 

  65. Gojnic M, Petkovic S, Papic M, Mostic T, Jeremic K, Vilendecic Z, et al. Plasma albumin level as an indicator of severity of preeclampsia. Clin Exp Obstet Gynecol. 2004;31:209–10.

    CAS  PubMed  Google Scholar 

  66. Morris JA, Hustead RF, Robinson RG, Haswell GL. Measurement of fetoplacental blood volume in the human previable fetus. Am J Obstet Gynecol. 1974;118:927–34.

    CAS  PubMed  Google Scholar 

  67. Linderkamp O, Nelle M, Kraus M, Zilow EP. The effect of early and late cord-clamping on blood viscosity and other hemorheological parameters in full-term neonates. Acta Paediatr. 1992;81:745–50.

    CAS  PubMed  Google Scholar 

  68. Salem F, Johnson TN, Abduljalil K, Tucker GT, Rostami-Hodjegan A. A re-evaluation and validation of ontogeny functions for cytochrome P450 1A2 and 3A4 based on in vivo data. Clin Pharmacokinet. 2014;53:625–36.

    CAS  PubMed  Google Scholar 

  69. Johnson TN, Rostami-Hodjegan A, Tucker GT. Prediction of the clearance of eleven drugs and associated variability in neonates, infants and children. Clin Pharmacokinet. 2006;45:931–56.

    CAS  PubMed  Google Scholar 

  70. Valentin J, editor. Basic anatomical and physiological data for use in radiological protection: reference values. ICRP Publication 89. Oxford: Pergamon; 2002.

  71. Usher R, Shephard M, Lind J. The blood volume of the newborn infant and placental transfusion. Acta Paediatr. 1963;52:497–512.

    CAS  PubMed  Google Scholar 

  72. Hoogeveen M, Meerman RH, Pasman S, Egberts J. A new method to determine the feto-placental volume based on dilution of fetal haemoglobin and an estimation of plasma fluid loss after intrauterine intravascular transfusion. BJOG. 2002;109:1132–6.

    CAS  PubMed  Google Scholar 

  73. Marx JA, Hockberger RS, Walls RM, Adams JG, Barsan WG. Rosen’s emergency medicine: concepts and clinical practice. 7th ed. Philadelphia: Elsevier; 2009.

    Google Scholar 

  74. Marx JA, Hockberger RS, Walls RM. Rosen’s emergency medicine: concepts and clinical practice. 8th ed. Philadelphia: Saunders, Elsevier; 2013.

    Google Scholar 

  75. Nicolaides KH, Clewell WH, Rodeck CH. Measurement of human fetoplacental blood volume in erythroblastosis fetalis. Am J Obstet Gynecol. 1987;157:50–3.

    CAS  PubMed  Google Scholar 

  76. Boulot P, Cattaneo A, Taib J, Peray P, Lefort G, Hedon B, et al. Hematologic values of fetal blood obtained by means of cordocentesis. Fetal Diagn Ther. 1993;8:309–16.

    CAS  PubMed  Google Scholar 

  77. Forestier F, Daffos F, Catherine N, Renard M, Andreux JP. Developmental hematopoiesis in normal human fetal blood. Blood. 1991;77:2360–3.

    CAS  PubMed  Google Scholar 

  78. Forestier F, Daffos F, Galacteros F, Bardakjian J, Rainaut M, Beuzard Y. Hematological values of 163 normal fetuses between 18 and 30 weeks of gestation. Pediatr Res. 1986;20:342–6.

    CAS  PubMed  Google Scholar 

  79. Millar DS, Davis LR, Rodeck CH, Nicolaides KH, Mibashan RS. Normal blood cell values in the early mid-trimester fetus. Prenat Diagn. 1985;5:367–73.

    CAS  PubMed  Google Scholar 

  80. Jauniaux E, Pahal G, Gervy C, Gulbis B. Blood biochemistry and endocrinology in the human fetus between 11 and 17 weeks of gestation. Reprod Biomed Online. 2000;1:38–44.

    CAS  PubMed  Google Scholar 

  81. Cartlidge PH, Rutter N. Serum albumin concentrations and oedema in the newborn. Arch Dis Child. 1986;61:657–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Forestier F, Daffos F, Rainaut M, Bruneau M, Trivin F. Blood chemistry of normal human fetuses at midtrimester of pregnancy. Pediatr Res. 1987;21:579–83.

    CAS  PubMed  Google Scholar 

  83. Gitlin D, Boesman M. Serum alpha-fetoprotein, albumin, and gamma-G-globulin in the human conceptus. J Clin Invest. 1966;45:1826–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Lee JN, Chen SS, Richens A, Menabawey M, Chard T. Serum protein binding of diazepam in maternal and foetal serum during pregnancy. Br J Clin Pharmacol. 1982;14:551–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Nau H, Krauer B. Serum protein binding of valproic acid in fetus-mother pairs throughout pregnancy: correlation with oxytocin administration and albumin and free fatty acid concentrations. J Clin Pharmacol. 1986;26:215–21.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Ms. Eleanor Savill and Ms. Jessica Waite for their assistance with collecting the references and preparing the manuscript and Ruth Clayton for her helpful comments and proofreading.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Abduljalil.

Ethics declarations

Funding

No funding was received for the conduct of this study or the preparation of this article.

Conflict of interest

Khaled Abduljalil, Masoud Jamei, and Trevor N. Johnson are full-time employees of Certara UK Limited. The activities of Certara are supported by a consortium of pharmaceutical companies. The Simcyp Simulators are freely available, following completion of the relevant workshops, to approved members of academic institutions and other non-for-profit organizations for research and teaching purposes.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 38 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abduljalil, K., Jamei, M. & Johnson, T.N. Fetal Physiologically Based Pharmacokinetic Models: Systems Information on Fetal Blood Components and Binding Proteins. Clin Pharmacokinet 59, 629–642 (2020). https://doi.org/10.1007/s40262-019-00836-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-019-00836-3

Navigation