Skip to main content
Log in

Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Objective

The objective of this study was to examine the association between tacrolimus concentration in oral fluids and in whole blood and to investigate the various factors that influence this relationship.

Patients and Methods

Forty-six adult kidney transplant recipients were included in the study. Study A (ten patients) included the collection of several paired oral fluid samples by passive drool over a 12-h post-dose period. Study B (36 patients) included the collection of oral fluids pre-dose and at 2 h after the tacrolimus dose under three conditions: un-stimulated, after stimulation with a tart candy, and after mouth rinsing. The tacrolimus concentration in oral fluids was measured by a specially developed sensitive and specific liquid chromatography mass spectrometry method. A salivary transferrin concentration of >1 mg/dL was used as a cut-off value for oral fluid blood contamination.

Results

Rinsing the oral cavity before sampling proved to provide the most suitable sampling strategy giving a correlation coefficient value of 0.71 (p = 0.001) between the tacrolimus concentration in oral fluids and the tacrolimus concentration in whole blood at trough. Mean and 95% confidence interval of tacrolimus concentration in oral fluids at the pre-dose concentration for samples collected after mouth rinsing was 584 (436, 782) pg/mL. The ratio of the tacrolimus concentration in oral fluids to the tacrolimus concentration in whole blood (*100) was 11% (95% confidence interval 9–13) for all sampling times. Oral fluid pH or weight of a saliva sample did not influence the tacrolimus concentration in oral fluids. Tacrolimus distribution into oral fluids exhibited a delay with a pronounced counter-clockwise hysteresis with respect to the time after dose. A multivariate analysis of variance revealed that the tacrolimus concentration in oral fluids is related to the tacrolimus concentration in whole blood and tacrolimus plasma-binding proteins including albumin and cholesterol.

Conclusion

An optimal sampling strategy for the determination of the tacrolimus concentration in oral fluids was established. Measuring the tacrolimus concentration in oral fluids appears to be a feasible and non-invasive method for predicting the concentration of tacrolimus in whole blood.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AUC:

Area under the concentration-time curve

BCRP:

Breast cancer resistance protein (BCRP), encoded by the ABCG2 gene

BSEP:

Bile salt export pump (BSEP), encoded by the ABCB11 gene

C0:

Tacrolimus concentration before dose

C2:

Tacrolimus concentration at 2 h after dose

C max :

Maximum concentration

CV:

Coefficient of variation

CYP:

Cytochrome P450

LLOQ:

Lower limit of quantification

MRP2:

Multidrug resistance-associated protein 2 (MRP2), encoded by the ABCC2 gene

OF:

Oral fluids

P-gp:

Permeability glycoprotein or multidrug resistance protein 1 (MDR1) encoded by the ABCB1 gene

TAC:

Tacrolimus

TAC-OF:

Tacrolimus concentration in oral fluid

TAC-WB:

Tacrolimus concentration in whole blood

TRNs:

Transferrin concentration in saliva

References

  1. Kidney Disease: Improving Global Outcomes Transplant Work G. KDIGO clinical practice guideline for the care of kidney transplant recipients. Am J Transplant. 2009;9(Suppl. 3):S1–155.

    Google Scholar 

  2. Thomson AW, Bonham CA, Zeevi A. Mode of action of tacrolimus (FK506): molecular and cellular mechanisms. Ther Drug Monit. 1995;17(6):584–91.

    Article  PubMed  CAS  Google Scholar 

  3. Halloran PF. Immunosuppressive drugs for kidney transplantation. N Engl J Med. 2004;351(26):2715–29.

    Article  PubMed  CAS  Google Scholar 

  4. Iwasaki K. Metabolism of tacrolimus (FK506) and recent topics in clinical pharmacokinetics. Drug Metab Pharmacokinet. 2007;22(5):328–35.

    Article  PubMed  CAS  Google Scholar 

  5. Blume H, Donath F, Warnke A, Schug BS. Pharmacokinetic drug interaction profiles of proton pump inhibitors. Drug Saf. 2006;29(9):769–84.

    Article  PubMed  CAS  Google Scholar 

  6. Hooper DK, Fukuda T, Gardiner R, Logan B, Roy-Chaudhury A, Kirby CL, et al. Risk of tacrolimus toxicity in CYP3A5 nonexpressors treated with intravenous nicardipine after kidney transplantation. Transplantation. 2012;93(8):806–12.

    Article  PubMed  CAS  Google Scholar 

  7. Maguire M, Franz T, Hains DS. A clinically significant interaction between tacrolimus and multiple proton pump inhibitors in a kidney transplant recipient. Pediatr Transplant. 2012;16(6):E217–20.

    Article  PubMed  Google Scholar 

  8. Takahashi K, Motohashi H, Yonezawa A, Okuda M, Ito N, Yamamoto S, et al. Lansoprazole—tacrolimus interaction in Japanese transplant recipient with CYP2C19 polymorphism. Ann Pharmacother. 2004;38(5):791–4.

    Article  PubMed  Google Scholar 

  9. Staatz CE, Goodman LK, Tett SE. Effect of CYP3A and ABCB1 single nucleotide polymorphisms on the pharmacokinetics and pharmacodynamics of calcineurin inhibitors: part II. Clin Pharmacokinet. 2010;49(4):207–21.

    Article  PubMed  CAS  Google Scholar 

  10. Ro H, Min SI, Yang J, Moon KC, Kim YS, Kim SJ, et al. Impact of tacrolimus intraindividual variability and CYP3A5 genetic polymorphism on acute rejection in kidney transplantation. Ther Drug Monit. 2012;34(6):680–5.

    Article  PubMed  CAS  Google Scholar 

  11. Shi Y, Li Y, Tang J, Zhang J, Zou Y, Cai B, et al. Influence of CYP3A4, CYP3A5 and MDR-1 polymorphisms on tacrolimus pharmacokinetics and early renal dysfunction in liver transplant recipients. Gene. 2013;512(2):226–31.

    Article  PubMed  CAS  Google Scholar 

  12. Uesugi M, Masuda S, Katsura T, Oike F, Takada Y, Inui K. Effect of intestinal CYP3A5 on postoperative tacrolimus trough levels in living-donor liver transplant recipients. Pharmacogenet Genom. 2006;16(2):119–27.

    Article  CAS  Google Scholar 

  13. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van Gelder T. The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2014;53(2):123–39.

    Article  PubMed  CAS  Google Scholar 

  14. Fukudo M, Yano I, Yoshimura A, Masuda S, Uesugi M, Hosohata K, et al. Impact of MDR1 and CYP3A5 on the oral clearance of tacrolimus and tacrolimus-related renal dysfunction in adult living-donor liver transplant patients. Pharmacogenet Genom. 2008;18(5):413–23.

    Article  CAS  Google Scholar 

  15. Capron A, Mourad M, De Meyer M, De Pauw L, Eddour DC, Latinne D, et al. CYP3A5 and ABCB1 polymorphisms influence tacrolimus concentrations in peripheral blood mononuclear cells after renal transplantation. Pharmacogenomics. 2010;11(5):703–14.

    Article  PubMed  CAS  Google Scholar 

  16. Kahan BD, Keown P, Levy GA, Johnston A. Therapeutic drug monitoring of immunosuppressant drugs in clinical practice. Clin Ther. 2002;24(3):330–50 (discussion 29).

    Article  PubMed  CAS  Google Scholar 

  17. Staatz CE, Tett SE. Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet. 2004;43(10):623–53.

    Article  PubMed  CAS  Google Scholar 

  18. Cheung CY, van der Heijden J, Hoogtanders K, Christiaans M, Liu YL, Chan YH, et al. Dried blood spot measurement: application in tacrolimus monitoring using limited sampling strategy and abbreviated AUC estimation. Transpl Int. 2008;21(2):140–5.

    PubMed  CAS  Google Scholar 

  19. Ho CS, Lam CW, Chan MH, Cheung RC, Law LK, Lit LC, et al. Electrospray ionisation mass spectrometry: principles and clinical applications. Clin Biochem Rev. 2003;24(1):3–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Mendonza AE, Gohh RY, Akhlaghi F. Analysis of mycophenolic acid in saliva using liquid chromatography tandem mass spectrometry. Ther Drug Monit. 2006;28(3):402–6.

    Article  PubMed  CAS  Google Scholar 

  21. Teeninga N, Guan Z, Freijer J, Ruiter AF, Ackermans MT, Kist-van Holthe JE, et al. Monitoring prednisolone and prednisone in saliva: a population pharmacokinetic approach in healthy volunteers. Ther Drug Monit. 2013;35(4):485–92.

    Article  PubMed  CAS  Google Scholar 

  22. Mendonza A, Gohh R, Akhlaghi F. Determination of cyclosporine in saliva using liquid chromatography–tandem mass spectrometry. Ther Drug Monit. 2004;26(5):569–75.

    Article  PubMed  CAS  Google Scholar 

  23. Belostotsky V, Adaway J, Keevil BG, Cohen DR, Webb NJ. Measurement of saliva tacrolimus levels in pediatric renal transplant recipients. Pediatr Nephrol. 2011;26(1):133–8.

    Article  PubMed  Google Scholar 

  24. Tennison M, Ali I, Miles MV, D’Cruz O, Vaughn B, Greenwood R. Feasibility and acceptance of salivary monitoring of antiepileptic drugs via the US postal service. Ther Drug Monit. 2004;26(3):295–9.

    Article  PubMed  CAS  Google Scholar 

  25. Gorodischer R, Burtin P, Hwang P, Levine M, Koren G. Saliva versus blood sampling for therapeutic drug monitoring in children: patient and parental preferences and an economic analysis. Ther Drug Monit. 1994;16(5):437–43.

    Article  PubMed  CAS  Google Scholar 

  26. DrugBank. Tacrolimus. http://www.drugbank.ca/drugs/DB00864. Accessed 12 May 2015.

  27. Haeckel R. Factors influencing the saliva/plasma ratio of drugs. Ann N Y Acad Sci. 1993;694:128–42.

    Article  PubMed  CAS  Google Scholar 

  28. Zahir H, McCaughan G, Gleeson M, Nand RA, McLachlan AJ. Changes in tacrolimus distribution in blood and plasma protein binding following liver transplantation. Ther Drug Monit. 2004;26(5):506–15.

    Article  PubMed  CAS  Google Scholar 

  29. Zahir H, Nand RA, Brown KF, Tattam BN, McLachlan AJ. Validation of methods to study the distribution and protein binding of tacrolimus in human blood. J Pharmacol Toxicol Methods. 2001;46(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  30. Stienstra NA, Sikma MA, van Dapperen AL, de Lange DW, van Maarseveen EM. Development of a simple and rapid method to measure the free fraction of tacrolimus in plasma using ultrafiltration and LC–MS/MS. Ther Drug Monit. 2016;38(6):722–7.

    Article  PubMed  CAS  Google Scholar 

  31. Reece PA, Disney AP, Stafford I, Shastry JC. Prednisolone protein binding in renal transplant patients. Br J Clin Pharmacol. 1985;20(2):159–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Schwartz EB, Granger DA. Transferrin enzyme immunoassay for quantitative monitoring of blood contamination in saliva. Clin Chem. 2004;50(3):654–6.

    Article  PubMed  CAS  Google Scholar 

  33. Ghareeb M, Akhlaghi F. Development and validation of a sensitive and selective LC–MS/MS method for determination of tacrolimus in oral fluids. J Chromatogr B Anal Technol Biomed Life Sci. 2016;1038:136–41.

    Article  CAS  Google Scholar 

  34. Ogasawara K, Chitnis SD, Gohh RY, Christians U, Akhlaghi F. Multidrug resistance-associated protein 2 (MRP2/ABCC2) haplotypes significantly affect the pharmacokinetics of tacrolimus in kidney transplant recipients. Clin Pharmacokinet. 2013;52(9):751–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Granger DA, Cicchetti D, Rogosch FA, Hibel LC, Teisl M, Flores E. Blood contamination in children’s saliva: prevalence, stability, and impact on the measurement of salivary cortisol, testosterone, and dehydroepiandrosterone. Psychoneuroendocrinology. 2007;32(6):724–33.

    Article  PubMed  CAS  Google Scholar 

  36. Akhlaghi F, Ashley J, Keogh A, Brown K. Cyclosporine plasma unbound fraction in heart and lung transplantation recipients. Ther Drug Monit. 1999;21(1):8–16.

    Article  PubMed  CAS  Google Scholar 

  37. Akhlaghi F, Keogh AM, Brown KF. Unbound cyclosporine and allograft rejection after heart transplantation. Transplantation. 1999;67(1):54–9.

    Article  PubMed  CAS  Google Scholar 

  38. Coates JE, Lam SF, McGaw WT. Radioimmunoassay of salivary cyclosporine with use of 125I-labeled cyclosporine. Clin Chem. 1988;34(8):1545–51.

    PubMed  CAS  Google Scholar 

  39. Shen B, Li S, Zhang Y, Yuan X, Fan Y, Liu Z, et al. Determination of total, free and saliva mycophenolic acid with a LC–MS/MS method: application to pharmacokinetic study in healthy volunteers and renal transplant patients. J Pharm Biomed Anal. 2009;50(3):515–21.

    Article  PubMed  CAS  Google Scholar 

  40. Wiesen MH, Farowski F, Feldkotter M, Hoppe B, Muller C. Liquid chromatography–tandem mass spectrometry method for the quantification of mycophenolic acid and its phenolic glucuronide in saliva and plasma using a standardized saliva collection device. J Chromatogr A. 2012;1241:52–9.

    Article  PubMed  CAS  Google Scholar 

  41. Galeazzi RL, Benet LZ, Sheiner LB. Relationship between the pharmacokinetics and pharmacodynamics of procainamide. Clin Pharmacol Ther. 1976;20(3):278–89.

    Article  PubMed  CAS  Google Scholar 

  42. Liu H, Delgado MR. Therapeutic drug concentration monitoring using saliva samples. Focus on anticonvulsants. Clin Pharmacokinet. 1999;36(6):453–70.

    Article  PubMed  CAS  Google Scholar 

  43. Feller K, le Petit G. On the distribution of drugs in saliva and blood plasma. Int J Clin Pharmacol Biopharm. 1977;15(10):468–9.

    PubMed  CAS  Google Scholar 

  44. Kragelund C, Hansen C, Torpet LA, Nauntofte B, Brosen K, Pedersen AM, et al. Expression of two drug-metabolizing cytochrome P450-enzymes in human salivary glands. Oral Dis. 2008;14(6):533–40.

    Article  PubMed  CAS  Google Scholar 

  45. Uematsu T, Yamaoka M, Matsuura T, Doto R, Hotomi H, Yamada A, et al. P-glycoprotein expression in human major and minor salivary glands. Arch Oral Biol. 2001;46(6):521–7.

    Article  PubMed  CAS  Google Scholar 

  46. Uematsu T, Yamaoka M, Doto R, Tanaka H, Matsuura T, Furusawa K. Expression of ATP-binding cassette transporter in human salivary ducts. Arch Oral Biol. 2003;48(1):87–90.

    Article  PubMed  CAS  Google Scholar 

  47. Ho RH, Leake BF, Kilkenny DM, Zu Schwabedissen HEM, Glaeser H, Kroetz DL, et al. Polymorphic variants in the human bile salt export pump (BSEP; ABCB11): functional characterization and interindividual variability. Pharmacogenet Genom. 2010;20(1):45–57.

    Article  CAS  Google Scholar 

  48. Yadav DK, Gera DN, Gumber MR, Kute VB, Patel MP, Vanikar AV, et al. Tacrolimus-induced severe cholestasis complicating renal transplantation. Ren Fail. 2013;35(5):735–7.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank Ms. Maria Medeiros, RN, for her help in conducting the clinical studies and Dr. Ken Ogasawara for genotyping the patients.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatemeh Akhlaghi.

Ethics declarations

Funding

This study was funded by the Rhode Island Science and Technology Advisory Council and the University of Rhode Island, College of Pharmacy.

Conflict of interest

Mwlod Ghareeb, Reginald Y. Gohh, and Fatemeh Akhlaghi have no conflicts of interest directly relevant to the content of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghareeb, M., Gohh, R.Y. & Akhlaghi, F. Tacrolimus Concentration in Saliva of Kidney Transplant Recipients: Factors Influencing the Relationship with Whole Blood Concentrations. Clin Pharmacokinet 57, 1199–1210 (2018). https://doi.org/10.1007/s40262-017-0626-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-017-0626-1

Navigation