Skip to main content
Log in

Influence of FCGR3A-158V/F Genotype and Baseline CD20 Antigen Count on Target-Mediated Elimination of Rituximab in Patients with Chronic Lymphocytic Leukemia: A Study of FILO Group

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and objectives

Rituximab is an anti-CD20 monoclonal antibody approved in the first-line treatment of patients with chronic lymphocytic leukemia (CLL). Rituximab pharmacokinetics shows a time dependency possibly related to changes in the target antigen amount over time. The purpose of this study was to quantify the influence of both CD20 antigenic mass and the FcγRIIIA genetic polymorphism on rituximab pharmacokinetics in CLL.

Methods

Rituximab pharmacokinetics was described in 118 CLL patients using a semi-mechanistic model including a latent target antigen turnover, which allowed the estimation of rituximab target-mediated elimination in addition to the endogenous clearance.

Results

Target-mediated elimination rate constant increased with the baseline CD20 count on circulating B cells (p = 0.00046) and in patients with the FCGR3A-158VV genotype (p = 0.0016). Physiologic elimination of antigen was lower in the Binet C disease stage (p = 0.00018). The effects of these covariates on rituximab concentrations were mainly visible at the beginning of treatment. Body surface area also increased central and peripheral volumes of distribution (p = 1.3 × 10−5 and 0.0015, respectively).

Conclusions

A pharmacokinetic model including target-mediated elimination accurately described rituximab concentrations in CLL and showed that rituximab ‘consumption’ (target-mediated elimination) increases with increasing baseline antigen count on circulating B cells and in FCGR3A-158VV patients.

Clinical trial registration: NCT01370772.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hallek M, Fischer K, Fingerle-Rowson G, et al. Addition of rituximab to fludarabine and cyclophosphamide in patients with chronic lymphocytic leukaemia: a randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

    Article  CAS  PubMed  Google Scholar 

  2. Tam CS, O’Brien S, Wierda W, et al. Long-term results of the fludarabine, cyclophosphamide, and rituximab regimen as initial therapy of chronic lymphocytic leukemia. Blood. 2008;112:975–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Robak T, Dmoszynska A, Solal-Céligny P, et al. Rituximab plus fludarabine and cyclophosphamide prolongs progression-free survival compared with fludarabine and cyclophosphamide alone in previously treated chronic lymphocytic leukemia. J Clin Oncol. 2010;28:1756–65.

    Article  CAS  PubMed  Google Scholar 

  4. Berinstein NL, Grillo-López A, White CA, et al. Association of serum eituximab (IDEC-C2B8) concentration and anti-tumor response in the treatment of recurrent low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1998;9:995–1001.

    Article  CAS  PubMed  Google Scholar 

  5. Li J, Zhi J, Wenger M, Valente N, et al. Population pharmacokinetics of rituximab in patients with chronic lymphocytic leukemia. J Clin Pharmacol. 2012;52:1918–26.

    Article  CAS  PubMed  Google Scholar 

  6. Igarashi T, Kobayashi Y, Ogura M, et al. Factors affecting toxicity, response and progression-free survival in relapsed patients with indolent B-cell lymphoma and mantle cell lymphoma treated with rituximab: a Japanese phase II study. Ann Oncol. 2002;13:928–43.

    Article  CAS  PubMed  Google Scholar 

  7. Tobinai K, Igarashi T, Itoh K, et al. Japanese multicenter phase II and pharmacokinetic study of rituximab in relapsed or refractory patients with aggressive B-cell lymphoma. Ann Oncol. 2004;15:821–30.

    Article  CAS  PubMed  Google Scholar 

  8. Daydé D, Ternant D, Ohresser M, et al. Tumor burden influences exposure and response to rituximab: pharmacokinetic-pharmacodynamic modeling using a syngeneic bioluminescent murine model expressing human CD20. Blood. 2009;113:3765–72.

    Article  PubMed  Google Scholar 

  9. Panoilia E, Schindler E, Samantas E, et al. A pharmacokinetic binding model for bevacizumab and VEGF165 in colorectal cancer patients. Cancer Chemother Pharmacol. 2015;75:791–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gibiansky L, Sutjandra L, Doshi S, et al. Population pharmacokinetic analysis of denosumab in patients with bone metastases from solid tumours. Clin Pharmacokinet. 2012;51:247–60.

    Article  CAS  PubMed  Google Scholar 

  11. Gibiansky L, Gibiansky E. Target-mediated drug disposition model: relationships with indirect response models and application to population PK-PD analysis. J Pharmacokinet Pharmacodyn. 2009;36:341–51.

    Article  PubMed  Google Scholar 

  12. Dirks N, Meibohm B. Population pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet. 2010;49:633–59.

    Article  CAS  PubMed  Google Scholar 

  13. Reff M, Carner K, Chambers K, et al. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83:435–45.

    CAS  PubMed  Google Scholar 

  14. Koene HR, Kleijer M, Algra J, et al. FcγRIIIa-158V/F polymorphism influences the binding of IgG by natural killer cell Fc γRIIIa, independently of the FcγRIIIa-48L/R/H phenotype. Blood. 1997;90:1109–14.

    CAS  PubMed  Google Scholar 

  15. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcγrIIIa gene. Blood. 2002;99:754–8.

    Article  CAS  PubMed  Google Scholar 

  16. Weng W-K, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  CAS  PubMed  Google Scholar 

  17. Kim DH, Du Jung H, Kim JG, et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood. 2006;108:2720–5.

    Article  CAS  PubMed  Google Scholar 

  18. Farag SS, Flinn IW, Modali R, et al. Fc gamma RIIIa and Fc gamma RIIa polymorphisms do not predict response to rituximab in B-cell chronic lymphocytic leukemia. Blood. 2004;103:1472–4.

    Article  CAS  PubMed  Google Scholar 

  19. Dornan D, Spleiss O, Yeh R-F, et al. Effect of FCGR2A and FCGR3A variants on CLL outcome. Blood. 2010;116:4212–22.

    Article  CAS  PubMed  Google Scholar 

  20. Ternant D, Berkane Z, Picon L, et al. Assessment of the influence of inflammation and FCGR3A genotype on infliximab pharmacokinetics and time to relapse in patients with Crohn’s eisease. Clin Pharmacokinet. 2015;54:551–62.

    Article  CAS  PubMed  Google Scholar 

  21. Hallek M, Cheson BD, Catovsky D, et al. Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood. 2008;111:5446–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Binet JL, Auquier A, Dighiero G, et al. A new prognostic classification of chronic lymphocytic leukemia derived from a multivariate survival analysis. Cancer. 1981;48:198–206.

    Article  CAS  PubMed  Google Scholar 

  23. Blasco H, Lalmanach G, Godat E, et al. Evaluation of a peptide ELISA for the detection of rituximab in serum. J Immunol Methods. 2007;325:127–39.

    Article  CAS  PubMed  Google Scholar 

  24. Dall’Ozzo S, Andres C, Bardos P, et al. Rapid single-step FCGR3A genotyping based on SYBR Green I fluorescence in real-time multiplex allele-specific PCR. J Immunol Methods. 2003;277:185–92.

  25. Campo E, Swerdlow SH, Harris NL, et al. The 2008 WHO classification of lymphoid neoplasms and beyond: evolving concepts and practical applications. Blood. 2011;117:5019–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nougaret S, Jung B, Aufort S, et al. Adrenal gland volume measurement in septic shock and control patients: a pilot study. Eur Radiol. 2010;20:2348–57.

    Article  PubMed  Google Scholar 

  27. Pearson TC, Guthrie DL, Simpson J, et al. Interpretation of measured red cell mass and plasma volume in adults: Expert Panel on Radionuclides of the International Council for Standardization in Haematology. Br J Haematol. 1995;89:748–56.

    Article  CAS  PubMed  Google Scholar 

  28. Alexander HD, Markey GM, Nolan RL, Morris TC. Cell sizing in chronic lymphoproliferative disorders: an aid to differential diagnosis. J Clin Pathol. 1992;45:875–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.

    Article  PubMed  Google Scholar 

  30. van Kesteren C, Zandvliet AS, Karlsson MO, et al. Semi-physiological model describing the hematological toxicity of the anti-cancer agent indisulam. Invest New Drugs. 2005;23:225–34.

    Article  CAS  PubMed  Google Scholar 

  31. Comets E, Brendel K, Mentré F. Computing normalised prediction distribution errors to evaluate nonlinear mixed-effect models: the npde add-on package for R. Comput Methods Programs Biomed. 2008;90:154–66.

    Article  PubMed  Google Scholar 

  32. Gibiansky E, Gibiansky L, Carlile DJ, et al. Population pharmacokinetics of obinutuzumab (GA101) in chronic lymphocytic leukemia (CLL) and non-Hodgkin’s lymphoma and exposure-response in CLL. CPT Pharmacomet Syst Pharmacol. 2014;3:e144.

    Article  CAS  Google Scholar 

  33. Huhn D, von Schilling C, Wilhelm M, et al. Rituximab therapy of patients with B-cell chronic lymphocytic leukemia. Blood. 2001;98:1326–31.

    Article  CAS  PubMed  Google Scholar 

  34. Greil R, Obrtlíková P, Smolej L, et al. Rituximab maintenance versus observation alone in patients with chronic lymphocytic leukaemia who respond to first-line or second-line rituximab-containing chemoimmunotherapy: final results of the AGMT CLL-8a Mabtenance randomised trial. Lancet Haematol. 2016;3:e317–29.

    Article  PubMed  Google Scholar 

  35. Gong Q, Ou Q, Ye S, et al. Importance of cellular microenvironment and circulatory dynamics in B cell immunotherapy. J Immunol. 2005;174:817–26.

    Article  CAS  PubMed  Google Scholar 

  36. Schröder C, Azimzadeh AM, Wu G, et al. Anti-CD20 treatment depletes B-cells in blood and lymphatic tissue of cynomolgus monkeys. Transpl Immunol. 2003;12:19–28.

    Article  PubMed  Google Scholar 

  37. Huh YO, Keating MJ, Saffer HL, et al. Higher levels of surface CD20 expression on circulating lymphocytes compared with bone marrow and lymph nodes in B-cell chronic lymphocytic leukemia. Am J Clin Pathol. 2001;116:437–43.

    Article  CAS  PubMed  Google Scholar 

  38. van Meerten T, van Rijn RS, Hol S, et al. Complement-induced cell death by rituximab depends on CD20 expression level and acts complementary to antibody-dependent cellular cytotoxicity. Clin Cancer Res. 2006;12:4027–35.

    Article  PubMed  Google Scholar 

  39. Tam CS, Otero-Palacios J, Abruzzo LV, et al. Chronic lymphocytic leukaemia CD20 expression is dependent on the genetic subtype: a study of quantitative flow cytometry and fluorescent in-situ hybridization in 510 patients. Br J Haematol. 2008;141:36–40.

    Article  PubMed  Google Scholar 

  40. Perz J, Topaly J, Fruehauf S, et al. Level of CD 20-expression and efficacy of rituximab treatment in patients with resistant or relapsing B-cell prolymphocytic leukemia and B-cell chronic lymphocytic leukemia. Leuk Lymphoma. 2002;43:149–51.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang W, Gordon M, Schultheis AM, et al. FCGR2A and FCGR3A polymorphisms associated with clinical outcome of epidermal growth factor receptor expressing metastatic colorectal cancer patients treated with single-agent cetuximab. J Clin Oncol. 2007;25:3712–8.

    Article  CAS  PubMed  Google Scholar 

  42. Musolino A, Naldi N, Bortesi B, et al. Immunoglobulin G fragment C receptor polymorphisms and clinical efficacy of trastuzumab-based therapy in patients with HER-2/neu-positive metastatic breast cancer. J Clin Oncol. 2008;26:1789–96.

    Article  CAS  PubMed  Google Scholar 

  43. Oliveira GB, Pereira FG, Metze K, Lorand-Metze I. Spontaneous apoptosis in chronic lymphocytic leukemia and its relationship to clinical and cell kinetic parameters. Cytometry. 2001;46:329–35.

    Article  CAS  PubMed  Google Scholar 

  44. Billard C. Apoptosis inducers in chronic lymphocytic leukemia. Oncotarget. 2014;5:309–25.

    Article  PubMed  Google Scholar 

  45. Junghans RP. IgG biosynthesis: no “immunoregulatory feedback”. Blood. 1997;90:3815–8.

    CAS  PubMed  Google Scholar 

  46. Wang W, Wang E, Balthasar J. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 2008;84:548–58.

    Article  CAS  PubMed  Google Scholar 

  47. Müller C, Murawski N, Wiesen MHJ, et al. The role of sex and weight on rituximab clearance and serum elimination half-life in elderly patients with DLBCL. Blood. 2012;119:3276–84.

    Article  PubMed  Google Scholar 

  48. Ternant D, Mulleman D, Lauféron F, et al. Influence of methotrexate on infliximab pharmacokinetics and pharmacodynamics in ankylosing spondylitis. Br J Clin Pharmacol. 2011;73:55–65.

    Article  Google Scholar 

  49. Azzopardi N, Lecomte T, Ternant D, et al. Cetuximab pharmacokinetics influences progression-free survival of metastatic colorectal cancer patients. Clin Cancer Res. 2011;17:6329–37.

    Article  CAS  PubMed  Google Scholar 

  50. Ng CM, Bruno R, Combs D, Davies B. Population pharmacokinetics of rituximab (anti-CD20 monoclonal antibody) in rheumatoid arthritis patients during a phase II clinical trial. J Clin Pharmacol. 2005;45:792–801.

    Article  CAS  PubMed  Google Scholar 

  51. Tabrizi MA, Tseng C-ML, Roskos LK. Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today. 2006;11:81–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Measurements of rituximab serum concentrations were carried out within the CePiBAc platform. CePiBAc is co-financed by the European Union. Europe is committed to the region center with the European Regional Development Fund. This work was supported by the French Higher Education and Research Ministry under the program ‘Investissements d’avenir’ Grant Agreement: LabEx MAbImprove ANR-10-LABX-53-01. The authors thank Anne-Claire Duveau, Caroline Guerineau-Brochon, and Céline Desvignes for technical assistance. The authors also thank the reviewers for valuable advice, which led to considerable improvement of the manuscript.

Author’s contributions

Mira Tout analyzed and interpreted the data, and wrote the manuscript. Anne-Laure Gagez participated in data interpretation and reviewed the manuscript. Stéphane Leprêtre designed the clinical study, was the principal investigator of the clinical study, and reviewed the manuscript. Valérie Gouilleux-Gruart performed genotyping and reviewed the manuscript. Nicolas Azzopardi participated in data analysis and reviewed the manuscript. Alain Delmer acquired data and reviewed the manuscript. Mélanie Mercier acquired data and reviewed the manuscript. Loic Ysebaert acquired data and reviewed the manuscript. Kamel Laribi acquired data and reviewed the manuscript. Hugo Gonzalez acquired data and reviewed the manuscript. Gilles Paintaud designed the study and reviewed the manuscript. Guillaume Cartron designed the clinical study, was the principal investigator of the clinical study, and reviewed the manuscript. David Ternant designed the study, supervised and participated in the writing of the manuscript, and reviewed the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Ternant.

Ethics declarations

Funding

This study was funded by FILO Group and Roche SAS (Neuilly, France).

Conflict of interest

Mira Tout, Anne-Laure Gagez, Stéphane Leprêtre, Valérie Gouilleux-Gruart, Nicolas Azzopardi, Alain Delmer, Mélanie Mercier, Loic Ysebaert, Kamel Laribi, and Hugo Gonzalez have no conflicts of interest to declare. Gilles Paintaud reports grants received by his research team from Novartis, Roche Pharma, Genzyme, MSD, Chugai, and Pfizer. Guillaume Cartron received consultancy fees from Roche and Celgene, honorarium from Roche, Celgene, Jansen, Gilead, and Sanofi, and travel arrangement from Jansen, Gilead, and Sanofi. David Ternant has given lectures for Sanofi and Amgen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tout, M., Gagez, AL., Leprêtre, S. et al. Influence of FCGR3A-158V/F Genotype and Baseline CD20 Antigen Count on Target-Mediated Elimination of Rituximab in Patients with Chronic Lymphocytic Leukemia: A Study of FILO Group. Clin Pharmacokinet 56, 635–647 (2017). https://doi.org/10.1007/s40262-016-0470-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0470-8

Keywords

Navigation