Skip to main content

Advertisement

Log in

Blinatumomab, a Bispecific T-cell Engager (BiTE®) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications

  • Original Research Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

Background and Objectives

Blinatumomab is a bispecific T-cell engager (BiTE®) antibody construct that transiently links CD19-positive B cells to CD3-positive T cells, resulting in induction of T-cell-mediated serial lysis of B cells and concomitant T-cell proliferation. Blinatumomab showed anti-leukemia activity in clinical trials and was approved by the US Food and Drug Administration for the treatment of Philadelphia chromosome-negative relapsed/refractory B-cell precursor acute lymphoblastic leukemia (r/r ALL). The objectives of this work were to characterize blinatumomab pharmacokinetics and pharmacodynamics and to evaluate dosing regimens.

Methods

Data from six phase I and II trials in patients with r/r ALL, minimal residual disease-positive ALL, and non-Hodgkin’s lymphoma (NHL) were analyzed. Blinatumomab pharmacokinetics was characterized by non-compartmental and population pharmacokinetic analyses and pharmacodynamics was described graphically.

Results

Blinatumomab exhibited linear pharmacokinetics under continuous intravenous infusion for 4–8 weeks per cycle over a dose range of 5–90 µg/m2/day, without target-mediated disposition. Estimated mean (standard deviation) volume of distribution, clearance, and elimination half-life were 4.52 (2.89) L, 2.72 (2.71) L/h, and 2.11 (1.42) h, respectively. Pharmacokinetics was similar in patients with ALL and NHL and was not affected by patient demographics, supporting fixed dosing in adults. Although creatinine clearance was a significant covariate of drug clearance, no dose adjustment was required in patients with mild or moderate renal impairment. Incidence of neutralizing antidrug antibodies was <1 %. Blinatumomab pharmacodynamics featured T-cell redistribution and activation, B-cell depletion, and transient dose-dependent cytokine elevation. Blinatumomab did not affect cytochrome P450 enzymes directly; cytokines may trigger transient cytochrome P450 suppression with low potential for inducing drug interactions.

Conclusions

Blinatumomab has unique pharmacokinetic and immunological features that require indication-dependent dosing regimens. Stepped dosing is required to achieve adequate efficacy and minimize cytokine release in diseases with high tumor burden.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bargou R, Leo E, Zugmaier G, Klinger M, Goebeler M, Knop S, et al. Tumor regression in cancer patients by very low doses of a T cell-engaging antibody. Science. 2008;321:974–7.

    Article  CAS  PubMed  Google Scholar 

  2. Nagorsen D, Bargou R, Ruttinger D, Kufer P, Baeuerle PA, Zugmaier G. Immunotherapy of lymphoma and leukemia with T-cell engaging BiTE antibody blinatumomab. Leuk Lymphoma. 2009;50:886–91.

    Article  CAS  PubMed  Google Scholar 

  3. Blincyto™ (blinatumomab) prescribing information. Thousand Oaks, CA, USA: Amgen Inc.; 2014.

  4. Przepiorka D, Ko C-W, Deisseroth A, Yancey CL, Candau-Chacon R, Chiu H-J, et al. FDA approval: blinatumomab. Clin Cancer Res. 2015;21:4035–9.

    Article  CAS  PubMed  Google Scholar 

  5. Klinger M, Brandl C, Zugmaier G, Hijazi Y, Bargou RC, Topp MS, et al. Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. Blood. 2012;119:6226–33.

    Article  CAS  PubMed  Google Scholar 

  6. Hijazi Y, Klinger M, Schub A, Wu B, Zhu M, Kufer P, et al. Blinatumomab exposure and pharmacodynamic response in patients with non-Hodgkin lymphoma (NHL). J Clin Oncol. 2013;31(15 suppl):Abstract 3051.

  7. Zimmerman Z, Maniar T, Nagorsen D. Unleashing the clinical power of T cells: CD19/CD3 bi-specific T cell engager (BiTE®) antibody construct blinatumomab as a potential therapy. Int Immunol. 2015;27:31–7.

    Article  CAS  PubMed  Google Scholar 

  8. Topp MS, Gökbuget N, Stein AS, Zugmaier G, O’Brien S, Bargou RC, et al. Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. Lancet Oncol. 2015;16:57–66.

    Article  CAS  PubMed  Google Scholar 

  9. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.

    Article  CAS  PubMed  Google Scholar 

  10. Raponi S, De Propris MS, Intoppa S, Milani ML, Vitale A, Elia L, et al. Flow cytometric study of potential target antigens (CD19, CD20, CD22, CD33) for antibody-based immunotherapy in acute lymphoblastic leukemia: analysis of 552 cases. Leuk Lymphoma. 2011;52:1098–107.

    Article  CAS  PubMed  Google Scholar 

  11. Nagorsen D, Baeuerle PA. Immunomodulatory therapy of cancer with T cell-engaging BiTE antibody blinatumomab. Exp Cell Res. 2011;317:1255–60.

    Article  CAS  PubMed  Google Scholar 

  12. Haas C, Krinner E, Brischwein K, Hoffmann P, Lutterbuse R, Schlereth B, et al. Mode of cytotoxic action of T cell-engaging BiTE antibody MT110. Immunobiology. 2009;214:441–53.

    Article  CAS  PubMed  Google Scholar 

  13. Anthony DA, Andrews DM, Watt SV, Trapani JA, Smyth MJ. Functional dissection of the granzyme family: cell death and inflammation. Immunol Rev. 2010;235:73–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ewen CL, Kane KP, Bleackley RC. A quarter century of granzymes. Cell Death Differ. 2012;19:28–35.

    Article  CAS  PubMed  Google Scholar 

  15. Voskoboinik I, Dunstone MA, Baran K, Whisstock JC, Trapani JA. Perforin: structure, function, and role in human immunopathology. Immunol Rev. 2010;235:35–54.

    Article  CAS  PubMed  Google Scholar 

  16. Kontermann RE. Dual targeting strategies with bispecific antibodies. mAbs. 2012;4:182–197.

  17. Rathi C, Meibohm B. Clinical pharmacology of bispecific antibody constructs. J Clin Pharmacol. 2015;55:S21–8.

    Article  CAS  PubMed  Google Scholar 

  18. Portell CA, Wenzell CM, Advani AS. Clinical and pharmacologic aspects of blinatumomab in the treatment of B-cell acute lymphoblastic leukemia. Clin Pharmacol. 2013;5:5–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu B, Sun YN. Pharmacokinetics of peptide-Fc fusion proteins. J Pharm Sci. 2014;103:53–64.

    Article  CAS  PubMed  Google Scholar 

  20. Fielding AK, Richards SM, Chopra R, Lazarus HM, Litzow MR, Buck G, et al. Outcome of 609 adults after relapse of acute lymphoblastic leukemia (ALL); an MRC UKALL12/ECOG 2993 study. Blood. 2007;109:944–50.

    Article  CAS  PubMed  Google Scholar 

  21. Oriol A, Vives S, Hernandez-Rivas JM, Tormo M, Heras I, Rivas C, et al. Outcome after relapse of acute lymphoblastic leukemia in adult patients included in four consecutive risk-adapted trials by the PETHEMA Study Group. Haematologica. 2010;95:589–96.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Nagorsen D. Blinatumomab (Blincyto™) indicated for the treatment of relapsed or refractory B-cell precursor acute lymphoblastic leukemia (Amgen, Inc.). In: Presented at: Accelerating anticancer agent development and validation workshop; May 6–8, 2015; Bethesda, MD, USA.

  23. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron. 1976;16:31–41.

    Article  CAS  PubMed  Google Scholar 

  24. Xu Y, Hijazi Y, Wolf A, Wu B, Sun YN, Zhu M. Physiologically based pharmacokinetic model to assess the influence of blinatumomab-mediated cytokine elevations on cytochrome P450 enzyme activity. CPT Pharmacomet Syst Pharmacol. 2015;4:507–15.

    Article  CAS  Google Scholar 

  25. Schoen T, Blum J, Paccaud F, Burnier M, Bochud M, Conen D, et al. Factors associated with 24-hour urinary volume: the Swiss salt survey. BMC Nephrol. 2013;14:246.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lobo ED, Hansen RJ, Balthasar JP. Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci. 2004;93:2645–68.

    Article  CAS  PubMed  Google Scholar 

  27. Zhu M, Kratzer A, Johnson J, Holland C, Brandl C, Singh I, et al. Pharmacokinetics/pharmacodynamics (PKPD) of blinatumomab in patients with relapsed/refractory B-precursor acute lymphoblastic leukemia (r/r ALL). J Clin Oncol. 2015;33(15 Suppl):Abstract 2561.

  28. Huang SM, Zhao H, Lee JI, Reynolds K, Zhang L, Temple R, et al. Therapeutic protein-drug interactions and implications for drug development. Clin Pharmacol Ther. 2010;87:497–503.

    Article  CAS  PubMed  Google Scholar 

  29. Sato AK, Viswanathan M, Kent RB, Wood CR. Therapeutic peptides: technological advances driving peptides into development. Curr Opin Biotechnol. 2006;17:638–42.

    Article  CAS  PubMed  Google Scholar 

  30. Roferon® (Interferon alfa-2a) prescribing information. Basel, Switzerland: F. Hoffmann-La Roche Ltd.; 2001.

  31. Neupogen® (filgrastim) prescribing information. Thousand Oaks, CA, USA: Amgen; 2015.

  32. Cerezyme® (imiglucerase for injection) prescribing information. Cambridge, MA, USA: Genzyme Corporation; 2011.

  33. Wu B, Johnson J, Soto M, Ponce M, Calamba D, Sun YN. Investigation of the mechanism of clearance of AMG 386, a selective angiopoietin-1/2 neutralizing peptibody, in splenectomized, nephrectomized, and FcRn knockout rodent models. Pharm Res. 2012;29:1057–65.

    Article  CAS  PubMed  Google Scholar 

  34. Leader B, Baca QJ, Golan DE. Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov. 2008;7:21–39.

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Ren TH, Wang DD. Clinical pharmacology considerations in biologics development. Acta Pharmacol Sin. 2012;33:1339–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meibohm B, Zhou H. Characterizing the impact of renal impairment on the clinical pharmacology of biologics. J Clin Pharmacol. 2012;52:54S–62S.

    Article  PubMed  Google Scholar 

  37. US Food and Drug Administration. Guidance for industry: pharmacokinetics in patients with impaired renal function: study design, data analysis, and impact on dosing and labeling. Draft Guidance. 2010.

  38. Meijer DKF, Ziegler K. Mechanisms for the hepatic clearance of oligopeptides and proteins: implications for rate of elimination, bioavailability, and cell-specific drug delivery to the liver. In: KL Audus TJRE, editor. Biological barriers to protein delivery. New York: Plenum Press; 1993. p. 339–407.

  39. Hoffmann P, Hofmeister R, Brischwein K, Brandl C, Crommer S, Bargou R, et al. Serial killing of tumor cells by cytotoxic T cells redirected with a CD19-/CD3-bispecific single-chain antibody construct. Int J Cancer. 2005;115:98–104.

    Article  CAS  PubMed  Google Scholar 

  40. Lameris R, de Bruin RC, Schneiders FL, van Bergen en Henegouwen PM, Verheul HM, de Gruijl TD, et al. Bispecific antibody platforms for cancer immunotherapy. Crit Rev Oncol Hematol. 2014;92:153–65.

    Article  PubMed  Google Scholar 

  41. Klinger M, Kufer P, Kirchinger P, Lutterbuese P, Leo E, Reinhardt C, et al. T cell responses during long-term continuous infusion of MT103 (MEDI-538; anti-CD19 BiTE) in patients with relapsed B-NHL: data from dose-escalation study MT103-104. Blood (ASH Annual Meeting Abstracts). 2006;108:Abstract 2725.

  42. Gökbuget N, Dombret H, Bonifacio M, Reichle A, Graux C, Havelange V, et al. BLAST: a confirmatory, single-arm, phase 2 study of blinatumomab, a bispecific T-cell engager (BiTE®) antibody construct, in patients with minimal residual disease B-precursor acute lymphoblastic leukemia (ALL). Blood (ASH Annual Meeting Abstracts). 2014;124:Abstract 379.

  43. Schub A, Nagele V, Zugmaier G, Brandl C, Hijazi Y, Topp MS, et al. Immunopharmacodynamic response to blinatumomab in patients with relapsed/refractory B-precursor acute lymphoblastic leukemia (ALL). J Clin Oncol. 2013;31(15 suppl):Abstract 7020.

  44. Viardot A, Goebeler M, Hess G, Neumann S, Pfreundschuh M, Adrian N, et al. Treatment of relapsed/refractory diffuse large B-cell lymphoma with the bispecific T-cell engager (BiTE®) antibody construct blinatumomab: primary analysis results from an open-label, phase 2 study. Blood (ASH Annual Meeting Abstracts). 2014;124:Abstract 4460.

Download references

Acknowledgments

The authors acknowledge Yu-Nien (Tom) Sun and Juan Jose Perez Ruixo for helpful comments during analyses. Micah Robinson (Amgen Inc.) provided medical writing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhu.

Ethics declarations

Funding

This study was funded by Amgen Inc.

Clinical studies

The clinical studies included in this manuscript have the following ClinicalTrials.gov identifiers: NCT00274742, NCT00560794, NCT01207388, NCT01209286, NCT01741792, and NCT01466179.

Author disclosures

Min Zhu, Benjamin Wu, Christian Brandl, Jessica Johnson, Andreas Wolf, Andrew Chow, and Sameer Doshi are employees of and shareholders in Amgen Inc.

Ethical approval

All procedures performed in the studies involving human participants described here were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the studies described here. Additional informed consent was obtained from all individual participants for whom identifying information is included in this article.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1.09 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, M., Wu, B., Brandl, C. et al. Blinatumomab, a Bispecific T-cell Engager (BiTE®) for CD-19 Targeted Cancer Immunotherapy: Clinical Pharmacology and Its Implications. Clin Pharmacokinet 55, 1271–1288 (2016). https://doi.org/10.1007/s40262-016-0405-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40262-016-0405-4

Keywords

Navigation