Skip to main content
Log in

Pharmacokinetics and Bioequivalence Evaluation of a New Oxycodone Tamper-Resistant Tablet Administered with an Opioid Antagonist in Patients with Chronic Pain

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background and Objectives

Oxycodone tamper resistant (OTR) is a new extended-release abuse-deterrent formulation providing improvements in the tamper resistant characteristics. This study aimed to investigate the pharmacokinetic properties of the new OTR tablets and evaluate the bioequivalence of oxycodone from OTR and the original extended release (ER) formulation tablets administered with an opioid antagonist in patients with chronic pain.

Methods

In this open-label, randomized, cross-over study, the enrolled patients were randomised to receive a single dose of 40 mg OTR or 40 mg OXYCONTIN® (OXY) tablet administered with naltrexone blockade under fasting conditions. Serial blood samples for pharmacokinetic analysis were collected. Plasma oxycodone was quantified by a high-performance liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) method. Tolerability was evaluated by monitoring adverse events, physical examinations, 12-lead ECG and laboratory tests.

Results

A total of 38 patients were enrolled and 33 subjects completed the study. After a single dose of 40 mg tablets, pharmacokinetic results of the new OTR tablet were found to be similar to those of original extended-release oxycodone tablet. OTR 40 mg was bioequivalent to OXY 40 mg and was well tolerated in patients with chronic pain.

Conclusions

The new OTR formulation could provide a new choice in the treatment of chronic pain and reduce the potential for oxycodone abuse.

Chictr.org identifier: ChiCTR1800017253.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Riley J, Eisenberg E, Muller-Schwefe G, et al. Oxycodone: a review of its use in the management of pain. Curr Med Res Opin. 2008;24(1):175–92.

    Article  CAS  Google Scholar 

  2. Lugo RA, Kern SE. The pharmacokinetics of oxycodone. J Pain Palliat Care Pharmacother. 2005;18(4):17–30.

    Article  Google Scholar 

  3. The Medical Letter Inc. Abuse-deterrent opioids. Med Lett Drugs Ther. 2017;59(1522):95–6.

    Google Scholar 

  4. Pergolizzi JV Jr, Raffa RB, Taylor R Jr, et al. Abuse-deterrent opioids: an update on current approaches and considerations. Curr Med Res Opin. 2018;34(4):711–23.

    Article  CAS  Google Scholar 

  5. Keast SL, Owora A, Nesser N, et al. Evaluation of abuse-deterrent or tamper-resistant opioid formulations on overall health care expenditures in a state medicaid program. J Manag Care Spec Pharm. 2016;22(4):347–56.

    PubMed  Google Scholar 

  6. Guy GP Jr, Zhang K, Bohm MK, et al. Vital signs: changes in opioid prescribing in the United States, 2006–2015. MMWR Morb Mortal Wkly Rep. 2017;66(26):697–704.

    Article  Google Scholar 

  7. Nguyen V, Raffa RB, Taylor R, et al. The role of abuse-deterrent formulations in countering opioid misuse and abuse. J Clin Pharm Ther. 2015;40(6):629–34.

    Article  CAS  Google Scholar 

  8. Investigator’s Brochure of Oxycodone Tamper Resistant (Reformulated Oxycontin), Purdue Pharma, released date Jun/2016, edition number 16.1.

  9. Shen Y, Luo Z, Yu Q, et al. Pharmacokinetics of dimemorfan phosphate tablets in healthy Chinese volunteers. Eur J Clin Pharmacol. 2017;73(6):709–15.

    Article  CAS  Google Scholar 

  10. Bioavailability and bioequivalence studies submitted in NDAs or INDs-general considerations. US FDA. 2014. https://www.fda.gov/regulatory-information/search-fda-guidance-documents/bioavailability-and-bioequivalence-studies-submitted-ndas-or-inds-general-considerations. Accessed 16 Oct 2019.

  11. Pain and Policy Studies Group. Opioid consumption data. https://ppsg-chart.medicine.wisc.edu/. Accessed 1 Jan 2019.

  12. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. Abusedeterrent opioids—evaluation and labeling: guidance for industry. Silver Spring: US DoH; 2015.

  13. OxyContin (oxycodone hydrochloride) extended-release tablets [package insert]. Stamford (CT): Purdue Pharma L.P.; 2016.

  14. Poyhia R, Seppala T, Olkkola KT, et al. The pharmacokinetics and metabolism of oxycodone after intramuscular and oral administration to healthy subjects. Br J Clin Pharmacol. 1992;33(6):617–21.

    Article  CAS  Google Scholar 

  15. Mandema JW, Kaiko RF, Oshlack B, Reder RF, Stanski DR. Characterization and validation of a pharmacokinetic model for controlled-release oxycodone. Br J Clin Pharmacol. 1996;42(6):747–56.

    Article  CAS  Google Scholar 

  16. Kokki M, Välitalo P, Rasanen I, Aaltomaa S, Ojanperä I, Eskelinen M, et al. Absorption of different oral dosage forms of oxycodone in the elderly: a cross-over clinical trial in patients undergoing cystoscopy. Eur J Clin Pharmacol. 2012;68(10):1357–63.

    Article  CAS  Google Scholar 

  17. Kinnunen M, Piirainen P, Kokki H, et al. Updated clinical pharmacokinetics and pharmacodynamics of oxycodone. Clin Pharmacokinet. 2019;58(6):705–25.

    Article  CAS  Google Scholar 

  18. Pöyhiä R, Vainio A, Kalso E. A review of oxycodone’s clinical pharmacokinetics and pharmacodynamics. J Pain Symptom Manag. 1993;8(2):63–7.

    Article  Google Scholar 

  19. Chen ZR, Irvine RJ, Somogyi AA, et al. Mu receptor binding of some commonly used opioids and their metabolites. Life Sci. 1991;48(22):2165–71.

    Article  CAS  Google Scholar 

  20. Alexander SPH, Mathie A, Peters JA. Guide to receptors and channels (GRAC), 4th edn. Br J Pharmacol. 2009;158(Suppl. 1):S1–25.

    CAS  Google Scholar 

  21. Kokki H, Kokki M. Central nervous system penetration of the opioid oxycodone. In: Preedy VR, editor. Neuropathology of drug addictions and substance misuse, vol. 3. 1st ed. New York: Academic; 2016 (ISBN 9780128006344).

    Chapter  Google Scholar 

  22. Bostrom E, Hammarlund-Udenaes M, Simonsson US. Blood–brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology. 2008;108(3):495–505.

    Article  Google Scholar 

  23. Bostrom E, Simonsson US, Hammarlund-Udenaes M. In vivo blood–brain barrier transport of oxycodone in the rat: indications for active influx and implications for pharmacokinetics/pharmacodynamics. Drug Metab Dispos. 2006;34(9):1624–31.

    Article  Google Scholar 

  24. Lemberg KK, Siiskonen AO, Kontinen VK, et al. Pharmacological characterization of noroxymorphone as a new opioid for spinal analgesia. Anesth Analg. 2008;106(2):463–70 (table of contents).

    Article  CAS  Google Scholar 

  25. Kokki M, Valitalo P, Kuusisto M, et al. Central nervous system penetration of oxycodone after intravenous and epidural administration. Br J Anaesth. 2014;112(1):133–40.

    Article  CAS  Google Scholar 

  26. Sadiq MW, Bostrom E, Keizer R, et al. Oxymorphone active uptake at the blood–brain barrier and population modeling of its pharmacokinetic–pharmacodynamic relationship. J Pharm Sci. 2013;102(9):3320–31.

    Article  CAS  Google Scholar 

  27. Vadivelu N, Chang D, Helander EM, et al. Ketorolac, oxymorphone, tapentadol, and tramadol: a comprehensive review. Anesthesiol Clin. 2017;35(2):e1–20.

    Article  Google Scholar 

  28. Klimas R, Witticke D, El Fallah S, et al. Contribution of oxycodone and its metabolites to the overall analgesic effect after oxycodone administration. Expert Opin Drug Metab Toxicol. 2013;9(5):517–28.

    Article  CAS  Google Scholar 

  29. Lalovic B, Kharasch E, Hoffer C, et al. Pharmacokinetics and pharmacodynamics of oral oxycodone in healthy human subjects: role of circulating active metabolites. Clin Pharmacol Ther. 2006;79(5):461–79.

    Article  CAS  Google Scholar 

  30. Samer CF, Daali Y, Wagner M, et al. The effects of CYP2D6 and CYP3A activities on the pharmacokinetics of immediate release oxycodone. Br J Pharmacol. 2010;160(4):907–18.

    Article  CAS  Google Scholar 

  31. Samer CF, Daali Y, Wagner M, et al. Genetic polymorphisms and drug interactions modulating CYP2D6 and CYP3A activities have a major effect on oxycodone analgesic efficacy and safety. Br J Pharmacol. 2010;160(4):919–30.

    Article  CAS  Google Scholar 

  32. Zwisler ST, Enggaard TP, Noehr-Jensen L, et al. The hypoalgesic effect of oxycodone in human experimental pain models in relation to the CYP2D6 oxidation polymorphism. Basic Clin Pharmacol Toxicol. 2009;104(4):335–44.

    Article  CAS  Google Scholar 

  33. Zwisler ST, Enggaard TP, Mikkelsen S, et al. Impact of the CYP2D6 genotype on post-operative intravenous oxycodone analgesia. Acta Anaesthesiol Scand. 2010;54(2):232–40.

    Article  CAS  Google Scholar 

  34. Stamer UM, Zhang L, Book M, et al. CYP2D6 genotype dependent oxycodone metabolism in postoperative patients. PLoS One. 2013;8(3):e60239.

    Article  CAS  Google Scholar 

  35. Gudin J, Levy-Cooperman N, Kopecky EA, et al. Comparing the effect of tampering on the oral pharmacokinetic profiles of two extended-release oxycodone formulations with abuse-deterrent properties. Pain Med. 2015;16(11):2142–51.

    Article  Google Scholar 

  36. Webster LR, Bath B, Medve RA, et al. Randomized, double-blind, placebo-controlled study of the abuse potential of different formulations of oral oxycodone. Pain Med. 2012;13(6):790–801.

    Article  Google Scholar 

  37. Franke RM, Morton T, Devarakonda K. Pooled post hoc analysis of population pharmacokinetics of oxycodone and acetaminophen following a single oral dose of biphasic immediate-release/extended-release oxycodone/acetaminophen tablets. Drug Des Dev Ther. 2015;9:4587–97.

    CAS  Google Scholar 

  38. Liukas A, Kuusniemi K, Aantaa R, et al. Elimination of intravenous oxycodone in the elderly: a pharmacokinetic study in postoperative orthopaedic patients of different age groups. Drugs Aging. 2011;28(1):41–50.

    Article  CAS  Google Scholar 

  39. Morton T, Franke R, Devarakonda K. Pooled post hoc analysis of population pharmacokinetics of oxycodone and acetaminophen following multiple oral doses of biphasic immediate-release/extended-release oxycodone/acetaminophen tablets. Pain Pract. 2016;16(6):730–6.

    Article  Google Scholar 

  40. Andreassen TN, Klepstad P, Davies A, et al. Influences on the pharmacokinetics of oxycodone: a multicentre cross-sectional study in 439 adult cancer patients. Eur J Clin Pharmacol. 2011;67(5):493–506.

    Article  CAS  Google Scholar 

  41. Elder NM, Atayee RS, Best BM, et al. Observations of urinary oxycodone and metabolite distributions in pain patients. J Anal Toxicol. 2014;38(3):129–34.

    Article  CAS  Google Scholar 

  42. Davis MP. Pharmacokinetic and pharmacodynamic evaluation of oxycodone and naltrexone for the treatment of chronic lower back pain. Expert Opin Drug Metab Toxicol. 2016;12(7):823–31.

    Article  CAS  Google Scholar 

  43. Pergolizzi JV Jr, Taylor R Jr, LeQuang JA, et al. Managing severe pain and abuse potential: the potential impact of a new abuse-deterrent formulation oxycodone/naltrexone extended-release product. J Pain Res. 2018;11:301–11.

    Article  CAS  Google Scholar 

  44. Chindalore VL, Craven RA, Yu KP, et al. Adding ultralow-dose naltrexone to oxycodone enhances and prolongs analgesia: a randomized, controlled trial of Oxytrex. J Pain. 2005;6(6):392–9.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yali Shen.

Ethics declarations

Funding

The study was sponsored and funded by Mundipharma (China) Pharmaceutical Co. Ltd. (Beijing, People’s Republic of China).

Conflict of interest

The authors have declared that no financial relationships with any organizations that might have an interest in the submitted work; no other relationships or activities that could influence the submitted work.

Ethical approval

The study protocol was approved by the Independent Ethics Committee of West China Hospital, Sichuan University (Chengdu, China). All procedures in this study were carried out in accordance with the Helsinki declaration.

Informed consent

Written informed consent was obtained from each subject before screening procedures.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 3329 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, Z., Miao, J., Shu, S. et al. Pharmacokinetics and Bioequivalence Evaluation of a New Oxycodone Tamper-Resistant Tablet Administered with an Opioid Antagonist in Patients with Chronic Pain. Clin Drug Investig 40, 139–148 (2020). https://doi.org/10.1007/s40261-019-00870-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-019-00870-w

Navigation