Skip to main content
Log in

Relationship Between Absolute Neutrophil Count Profiles and Pharmacokinetics of DA-3031, a Pegylated Granulocyte Colony-Stimulating Factor (Pegylated-G-CSF): A Dose Block-Randomized, Double-Blind, Dose-Escalation Study in Healthy Subjects

  • Original Research Article
  • Published:
Clinical Drug Investigation Aims and scope Submit manuscript

Abstract

Background

DA-3031 is a newly developed pegylated filgrastim, a recombinant human granulocyte colony-stimulating factor, that is expected to have an extended duration of action compared with non-modified filgrastim.

Objective

This study evaluated the tolerability, pharmacokinetics, and pharmacodynamics of DA-3031 in humans, and compared them with filgrastim.

Methods

The study was conducted in 48 healthy male Korean subjects. Forty subjects received subcutaneous single doses of 1.8, 3.6, 6, or 18 mg of DA-3031 or placebo in a dose block-randomized, double-blind, dose-escalation design. The remaining eight subjects were given subcutaneous doses of 100 μg/m2 of filgrastim daily for 5 days. Serial blood samples were collected for pharmacokinetic and pharmacodynamic analyses up to 312 h after the administration of DA-3031 and up to 264 h following the first administration of filgrastim.

Results

DA-3031 reached its peak plasma concentration at 6.0–48.0 h and was eliminated mono-exponentially. The pharmacokinetic parameters of DA-3031 increased with dose in a non-linear fashion. Absolute neutrophil count (ANC) levels increased with the dose of DA-3031, although the extent of the increase in ANC decreased at higher dose levels. DA-3031 resulted in similar ANC changes in the 3.6 to 6 mg dose range as 100 μg/m2 of filgrastim. The most frequent adverse event was back pain, which was observed after both DA-3031 and filgrastim administration.

Conclusions

DA-3031 showed non-linear pharmacodynamic and pharmacokinetic profiles and an extended duration of action compared with non-modified filgrastim, without unexpected toxicities in healthy subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Souza LM, Boone TC, Gabrilove J, et al. Recombinant human granulocyte colony-stimulating factor: effects on normal and leukemic myeloid cells. Science. 1986;232(4746):61–5.

    Article  PubMed  CAS  Google Scholar 

  2. Frampton JE, Lee CR, Faulds D. Filgrastim: a review of its pharmacological properties and therapeutic efficacy in neutropenia. Drugs. 1994;48(5):731–60.

    Article  PubMed  CAS  Google Scholar 

  3. Welte K, Gabrilove J, Bronchud MH, et al. Filgrastim (r-metHuG-CSF): the first 10 years. Blood. 1996;88(6):1907–29.

    PubMed  CAS  Google Scholar 

  4. Yowell SL, Blackwell S. Novel effects with polyethylene glycol modified pharmaceuticals. Cancer Treat Rev. 2002;28(Suppl A):3–6.

    Google Scholar 

  5. Kuwabara T, Kobayashi S, Sugiyama Y. Pharmacokinetics and pharmacodynamics of a recombinant human granulocyte colony-stimulating factor. Drug Metab Rev. 1996;28(4):625–58. doi:10.3109/03602539608994020.

    Article  PubMed  CAS  Google Scholar 

  6. Lord BI, Woolford LB, Molineux G. Kinetics of neutrophil production in normal and neutropenic animals during the response to filgrastim (r-metHu G-CSF) or filgrastim SD/01 (PEG-r-metHu G-CSF). Clin Cancer Res. 2001;7(7):2085–90.

    PubMed  CAS  Google Scholar 

  7. Molineux G. Pegylation: engineering improved biopharmaceuticals for oncology. Pharmacotherapy. 2003;23(8 Pt 2):3S–8S.

    Article  PubMed  CAS  Google Scholar 

  8. Molineux G. The design and development of pegfilgrastim (PEG-rmetHuG-CSF, Neulasta). Curr Pharm Des. 2004;10(11):1235–44.

    Article  PubMed  CAS  Google Scholar 

  9. Kinstler O, Molineux G, Treuheit M, et al. Mono-N-terminal poly(ethylene glycol)-protein conjugates. Adv Drug Deliv Rev. 2002;54(4):477–85.

    Article  PubMed  CAS  Google Scholar 

  10. Yang BB, Kido A. Pharmacokinetics and pharmacodynamics of pegfilgrastim. Clin Pharmacokinet. 2011;50(5):295–306. doi:10.2165/11586040-000000000-00000.

    Article  PubMed  CAS  Google Scholar 

  11. Johnston E, Crawford J, Blackwell S, et al. Randomized, dose-escalation study of SD/01 compared with daily filgrastim in patients receiving chemotherapy. J Clin Oncol. 2000;18(13):2522–8.

    PubMed  CAS  Google Scholar 

  12. Yang BB, Lum PK, Hayashi MM, et al. Polyethylene glycol modification of filgrastim results in decreased renal clearance of the protein in rats. J Pharm Sci. 2004;93(5):1367–73. doi:10.1002/jps.20024.

    Article  PubMed  CAS  Google Scholar 

  13. Zamboni WC. Pharmacokinetics of pegfilgrastim. Pharmacotherapy. 2003;23(8 Pt 2):9S–14S.

    Article  PubMed  CAS  Google Scholar 

  14. van Der Auwera P, Platzer E, Xu ZX, et al. Pharmacodynamics and pharmacokinetics of single doses of subcutaneous pegylated human G-CSF mutant (Ro 25-8315) in healthy volunteers: comparison with single and multiple daily doses of filgrastim. Am J Hematol. 2001;66(4):245–51. doi:10.1002/ajh.1052.

    Article  Google Scholar 

  15. Mager DE, Jusko WJ. General pharmacokinetic model for drugs exhibiting target-mediated drug disposition. J Pharmacokinet Pharmacodyn. 2001;28(6):507–32.

    Article  PubMed  CAS  Google Scholar 

  16. Krippendorff BF, Kuester K, Kloft C, et al. Nonlinear pharmacokinetics of therapeutic proteins resulting from receptor mediated endocytosis. J Pharmacokinet Pharmacodyn. 2009;36(3):239–60. doi:10.1007/s10928-009-9120-1.

    Article  PubMed  CAS  Google Scholar 

  17. Roskos LK, Lum P, Lockbaum P, et al. Pharmacokinetic/pharmacodynamic modeling of pegfilgrastim in healthy subjects. J Clin Pharmacol. 2006;46(7):747–57. doi:10.1177/0091270006288731.

    Article  PubMed  CAS  Google Scholar 

  18. Wang YM, Krzyzanski W, Doshi S, et al. Pharmacodynamics-mediated drug disposition (PDMDD) and precursor pool lifespan model for single dose of romiplostim in healthy subjects. AAPS J. 2010;12(4):729–40. doi:10.1208/s12248-010-9234-9.

    Article  PubMed  CAS  Google Scholar 

  19. Ulich TR, del Castillo J, Souza L. Kinetics and mechanisms of recombinant human granulocyte-colony stimulating factor-induced neutrophilia. Am J Pathol. 1988;133(3):630–8.

    PubMed  CAS  Google Scholar 

  20. Shin KH, Kim TE, Lim KS, et al. Pharmacokinetic and pharmacodynamic properties of a new long-acting granulocyte colony-stimulating factor (HM10460A) in healthy volunteers. BioDrugs. 2013;27(2):149–58. doi:10.1007/s40259-013-0010-0.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Sponsored by Dong-A Pharmaceutical Co., Seoul, Republic of Korea, this study was designed and performed by qualified investigators of the Department of Clinical Pharmacology and Therapeutics of Seoul National University Hospital. None of the authors have any conflicts of interest to disclose regarding the content of this article. Li Young Ahn, Kwang-Hee Shin, and Hyewon Jeon received training program grants from the Korea Healthcare Technology R&D Project, Ministry for Health and Welfare, Republic of Korea (A070001, Korea National Enterprise for Clinical Trials).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Sang Yu.

Additional information

Trial registration: ClinicalTrials.gov identifier: NCT00959777.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ahn, L.Y., Shin, KH., Lim, K.S. et al. Relationship Between Absolute Neutrophil Count Profiles and Pharmacokinetics of DA-3031, a Pegylated Granulocyte Colony-Stimulating Factor (Pegylated-G-CSF): A Dose Block-Randomized, Double-Blind, Dose-Escalation Study in Healthy Subjects. Clin Drug Investig 33, 817–824 (2013). https://doi.org/10.1007/s40261-013-0130-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40261-013-0130-9

Keywords

Navigation