Skip to main content
Log in

Targeting IL-36 in Inflammatory Skin Diseases

  • Leading Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Interleukin (IL)-36 cytokines are members of the IL-1 superfamily of cytokines. IL-36 cytokines are composed of three agonists (IL-36α, IL-36β, and IL-36γ) and two antagonists (IL-36 receptor antagonist [IL36Ra] and IL-38). These work in innate and acquired immunity and are known to contribute to host defense and to the pathogenesis of autoinflammatory diseases, autoimmune diseases, and infectious diseases. In the skin, IL-36α and IL-36γ are mainly expressed by keratinocytes in the epidermis, although they are also produced by dendritic cells, macrophages, endothelial cells, and dermal fibroblasts. IL-36 cytokines participate in the first-line defense of the skin against various exogenous assaults. IL-36 cytokines play significant roles in the host defense system and in the regulation of inflammatory pathways in the skin, collaborating with other cytokines/chemokines and immune-related molecules. Thus, numerous studies have shown IL-36 cytokines to play important roles in the pathogenesis of various skin diseases. In this context, the clinical efficacy and safety profiles of anti-IL-36 agents such as spesolimab and imsidolimab have been evaluated in patients with generalized pustular psoriasis, palmoplantar pustulosis, hidradenitis suppurativa, acne/acneiform eruptions, ichthyoses, and atopic dermatitis. This article comprehensively summarizes the roles played by IL-36 cytokines in the pathogenesis and pathophysiology of various skin diseases and summarizes the current state of research on therapeutic agents that target IL-36 cytokine pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dinarello CA. Overview of the IL-1 family in innate inflammation and acquired immunity. Immunol Rev. 2018;281:8–27. https://doi.org/10.1111/imr.12621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. van de Veerdonk FL, Netea MG. New insights in the immunobiology of IL-1 family members. Front Immunol. 2013;4:167. https://doi.org/10.3389/fimmu.2013.00167.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu D, Mu R, Wei X. The roles of IL-1 family cytokines in the pathogenesis of systemic sclerosis. Front Immunol. 2019;10:2025. https://doi.org/10.3389/fimmu.2019.02025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tsang MS, Sun X, Wong CK. The role of newe IL-1 family members (IL-36 and IL-38) in atopic dermatitis, allergic asthma, and allergic rhinitis. Curr Allergy Asthma Rep. 2020;20:40. https://doi.org/10.1007/s1182-020-00937-1.

    Article  CAS  PubMed  Google Scholar 

  5. Boutet MA, Nerviani A, Pitzalis C. IL-36, IL-37, and IL-38 cytokines in skin and joint inflammation: a comprehensive review of their therapeutic potential. Int J Mol Sci. 2019;20:1257. https://doi.org/10.3390/ijms20061257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Madonna S, Girolomoni G, Dinarello CA, Albanesi C. The significance of IL-36 hyperactivation and IL-36R targeting in psoriasis. Int J Mol Sci. 2019;20:3318. https://doi.org/10.3390/ijms20133318.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Towne JE, Renshaw BR, Douangpanya J, Lipsky BP, Shen M, Gabel CA, Sims JE. Interleukin-36 (IL-36) ligands require processing for full agonist (IL-36α, IL-36β, and IL-36γ) or antagonist (IL-36Ra) activity. J Biol Chem. 2011;286:42594–602. https://doi.org/10.1074/jbc.M111.267922.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Henry CM, Sullivan GP, Clancy DM, Afonina IS, Kulms D, Martin SJ. Neutrophil-derived proteases escalate inflammation through activation of IL-36 family cytokines. Cell Rep. 2016;14:708–22. https://doi.org/10.1016/j.celrep.2015.12.072.

    Article  CAS  PubMed  Google Scholar 

  9. Macleod T, Doble R, McGonagle D, Wasson CW, Alase A, Stacey M, Wittmann M. Neutrophil elastase-mediated proteolysis activates the anti-inflammatory cytokine IL-36 receptor antagonist. Sci Rep. 2016;6:24880. https://doi.org/10.1038/srep24880.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Clancy DM, Henry CM, Sullivan GP, Martin SJ. Neutrophil extracellular traps can serve as platforms for processing and activation of IL-1 family cytokines. FEBS J. 2017;284:1712–25. https://doi.org/10.1111/febs.14075.

    Article  CAS  PubMed  Google Scholar 

  11. Clancy DM, Sullivan GP, Moran HBT, Henry CM, Reeves EP, McElvaney NG, et al. Extracellular neutrophil proteases are efficient regulators of IL-1, IL-33, and IL-36 cytokine activity but poor effectors of microbial killing. Cell Rep. 2018;22:2937–50. https://doi.org/10.1016/j.celrep.2018.02.062.

    Article  CAS  PubMed  Google Scholar 

  12. Guo J, Tu J, Hu Y, Song G, Yin Z. Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis. Drug Des Devel Ther. 2019;13:581–8. https://doi.org/10.2147/DDDT.S194765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Johnston A, Xing X, Wolterink L, Barnes DH, Yin Z, Reingold L, et al. IL-1 and IL-36 are dominant cytokines in generalized pustular psoriasis. J Allergy Clin Immunol. 2017;140:109–20. https://doi.org/10.1016/j.jaci.2016.08.056.

    Article  CAS  PubMed  Google Scholar 

  14. Gresnigt MS, van de Veerdonk FL. Biology of IL-36 cytokines and their role in disease. Semin Immunol. 2013;25:458–65. https://doi.org/10.1016/j.smim.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  15. Boutet MA, Bart G, Penhoat M, Amiaud J, Brulin B, Charrier C, et al. Distinct expression of interleukin (IL)-36α, β and γ, their antagonist IL-36Ra and IL-38 in psoriasis, rheumatoid arthritis and Crohn’s disease. Clin Exp Immunol. 2016;184:159–73. https://doi.org/10.1111/cei.12761.

    Article  CAS  PubMed  Google Scholar 

  16. Dyring-Andersen B, Løvendorf MB, Coscia F, Santos A, Møller LBP, Colaço AR, et al. Spatially and cell-type resolved quantitative proteomic atlas of healthy human skin. Nat Commun. 2020;11:5587. https://doi.org/10.1038/s41467-020-19383-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Albanesi C, Madonna S, Gisondi P, Girolomoni G. The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol. 2018;9:1549. https://doi.org/10.3389/fimmu.2018.01549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Walsh PT, Fallon PG. The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann N Y Acad Sci. 2018;1417:23–34. https://doi.org/10.1111/nyas.13280.

    Article  CAS  PubMed  Google Scholar 

  19. Murrieta-Coxca JM, Rodríguez-Martínez S, Cancino-Diaz ME, Markert UR, Favaro RR, Morales-Prieto DM. IL-36 cytokines: regulators of inflammatory responses and their emerging role in immunology of reproduction. Int J Mol Sci. 2019;20:1649. https://doi.org/10.3390/ijms20071649.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. van de Veerdonk FL, Stoeckman AK, Wu G, Boeckermann AN, Azam T, Netea MG, et al. IL-38 binds to the IL-36 receptor and has biological effects on immune cells similar to IL-36 receptor antagonist. Proc Natl Acad Sci USA. 2012;109:3001–5. https://doi.org/10.1073/pnas.1121534109.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Calabrese L, Fiocco Z, Satoh TK, Peris K, French LE. Therapeutic potential of targeting interleukin-1 family cytokines in chronic inflammatory skin diseases. Br J Dermatol. 2022;186:925–41. https://doi.org/10.1111/bjd.20975.

    Article  CAS  PubMed  Google Scholar 

  22. Foster AM, Baliwag J, Chen CS, Guzman AM, Stoll SW, Gudjonsson JE, et al. IL-36 promotes myeloid cell infiltration, activation, and inflammatory activity in skin. J Immunol. 2014;192:6053–61. https://doi.org/10.4049/jimmunol.1301481.

    Article  CAS  PubMed  Google Scholar 

  23. Vigne S, Palmer G, Lamacchia C, Martin P, Talabot-Ayer D, Rodriguez E, et al. IL-36R ligands are potent regulators of dendritic and T cells. Blood. 2011;118:5813–23. https://doi.org/10.1182/blood-2011-05-356873.

    Article  CAS  PubMed  Google Scholar 

  24. Carrier Y, Ma HL, Ramon HE, Napierata L, Small C, O’Toole M, et al. Inter-regulation of Th-17 cytokines and the IL-36 cytokines in vitro and in vivo: implications in psoriasis pathogenesis. J Invest Dermatol. 2011;131:2428–37. https://doi.org/10.1038/jid.2011.234.

    Article  CAS  PubMed  Google Scholar 

  25. Li N, Yamasaki K, Saito R, Fukushi-Takahashi S, Shimada-Omori R, Asano M, et al. Alarmin function of cathelicidin antimicrobial peptide LL37 through IL-36γ induction in human epidermal keratinocytes. J Immunol. 2014;193:5140–8. https://doi.org/10.4049/jimmunol.1302574.

    Article  CAS  PubMed  Google Scholar 

  26. Gabay C, Towne JE. Regulation and function of interleukin-36 cytokines in homeostasis and pathological conditions. J Leukoc Biol. 2015;97:645–52. https://doi.org/10.1189/jlb.3RI1014-495R.

    Article  CAS  PubMed  Google Scholar 

  27. Giannoudaki E, Stefanska AM, Lawler H, Leon G, Hernandez Santana YE, Hassan N, et al. SIGIRR negatively regulates IL-36-driven psoriasiform inflammation and neutrophil infiltration in the skin. J Immunol. 2021;207:651–60. https://doi.org/10.4049/jimmunol.2100237.

    Article  CAS  PubMed  Google Scholar 

  28. Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QA. The role of interleukin-1 in inflammatory and malignant human skin diseases and the rationale for targeting interleukin-1 alpha. Med Res Rev. 2017;37:180–216. https://doi.org/10.1002/med.21406.

    Article  CAS  PubMed  Google Scholar 

  29. Bridgewood C, Fearnley GW, Berekmeri A, Laws P, Macleod T, Ponnambalam S, et al. IL-36γ is a strong inducer of IL-23 in psoriatic cells and activates angiogenesis. Front Immunol. 2018;9:200. https://doi.org/10.3389/fimmu.2018.00200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Buhl AL, Wenzel J. Interleukin-36 in infectious and inflammatory skin diseases. Front Immunol. 2019;10:1162. https://doi.org/10.3389/fimmu.2019.01162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Akiyama M, Takeichi T, McGrath JA, Sugiura K. Autoinflammatory keratinization diseases. J Allergy Clin Immunol. 2017;140:1545–7. https://doi.org/10.1016/j.jaci.2017.05.019.

    Article  PubMed  Google Scholar 

  32. Akiyama M, Takeichi T, McGrath JA, Sugiura K. Autoinflammatory keratinization diseases: an emerging concept encompassing various inflammatory keratinization disorders of the skin. J Dermatol Sci. 2018;90:105–11. https://doi.org/10.1016/j.jdermsci.2018.01.012.

    Article  CAS  PubMed  Google Scholar 

  33. Akiyama M. Pustular psoriasis as an autoinflammatory keratinization disease (AiKD): genetic predisposing factors and promising therapeutic targets. J Dermatol Sci. 2022;105:11–7. https://doi.org/10.1016/j.jdermsci.2021.11.009.

    Article  CAS  PubMed  Google Scholar 

  34. Marrakchi S, Guigue P, Renshaw BR, Puel A, Pei XY, Fraitag S, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis. N Engl J Med. 2011;365:620–8. https://doi.org/10.1056/NEJMoa1013068.

    Article  CAS  PubMed  Google Scholar 

  35. Sugiura K, Muto M, Akiyama M. CARD14 c.526G>C (p.Asp176His) is a significant risk factor for generalized pustular psoriasis with psoriasis vulgaris in the Japanese cohort. J Invest Dermatol. 2014;134:1755–7. https://doi.org/10.1038/jid.2014.46.

    Article  CAS  PubMed  Google Scholar 

  36. Takeichi T, Kobayashi A, Ogawa E, Okuno Y, Kataoka S, Kono M, et al. Autosomal dominant familial generalized pustular psoriasis caused by a CARD14 mutation. Br J Dermatol. 2017;177:e133–5. https://doi.org/10.1111/bjd.15442.

    Article  CAS  PubMed  Google Scholar 

  37. Setta-Kaffetzi N, Simpson MA, Navarini AA, Patel VM, Lu HC, Allen MH, et al. AP1S3 mutations are associated with pustular psoriasis and impaired toll-like receptor 3 trafficking. Am J Hum Genet. 2014;94:790–7. https://doi.org/10.1111/bjd.15442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Haskamp S, Bruns H, Hahn M, Hoffmann M, Gregor A, Löhr S, et al. Myeloperoxidase modulates inflammation in generalized pustular psoriasis and additional rare pustular skin diseases. Am J Hum Genet. 2020;107:527–38. https://doi.org/10.1016/j.ajhg.2020.07.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Frey S, Sticht H, Wilsmann-Theis D, Gerschütz A, Wolf K, Löhr S, et al. Rare loss-of-function mutation in SERPINA3 in generalized pustular psoriasis. J Invest Dermatol. 2020;140:1451-5.e13. https://doi.org/10.1016/j.jid.2019.11.024.

    Article  CAS  PubMed  Google Scholar 

  40. Mössner R, Wilsmann-Theis D, Oji V, Gkogkolou P, Löhr S, Schulz P, et al. The genetic basis for most patients with pustular skin disease remains elusive. Br J Dermatol. 2018;178:740–8. https://doi.org/10.1111/bjd.15867.

    Article  CAS  PubMed  Google Scholar 

  41. Twelves S, Mostafa A, Dand N, Burri E, Farkas K, Wilson R, et al. Clinical and genetic differences between pustular psoriasis subtypes. J Allergy Clin Immunol. 2019;143:1021–6. https://doi.org/10.1016/j.jaci.2018.06.038.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Sugiura K, Takemoto A, Yamaguchi M, Takahashi H, Shoda Y, Mitsuma T, et al. The majority of generalized pustular psoriasis without psoriasis vulgaris is caused by deficiency of interleukin-36 receptor antagonist. J Invest Dermatol. 2013;133:2514–21. https://doi.org/10.1038/jid.2013.230.

    Article  CAS  PubMed  Google Scholar 

  43. Takeichi T, Togawa Y, Okuno Y, Taniguchi R, Kono M, Matsue H, et al. A newly revealed IL36RN mutation in sibling cases complements our IL36RN mutation statistics for generalized pustular psoriasis. J Dermatol Sci. 2017;85:58–60. https://doi.org/10.1016/j.jdermsci.2016.10.009.

    Article  CAS  PubMed  Google Scholar 

  44. Akiyama M. Early-onset generalized pustular psoriasis is representative of autoinflammatory keratinization diseases. J Allergy Clin Immunol. 2019;143:809–10. https://doi.org/10.1016/j.jaci.2018.11.009.

    Article  PubMed  Google Scholar 

  45. Hussain S, Berki DM, Choon SE, Burden AD, Allen MH, Arostegui JI, et al. IL36RN mutations define a severe autoinflammatory phenotype of generalized pustular psoriasis. J Allergy Clin Immunol. 2015;135:1067–70. https://doi.org/10.1016/j.jaci.2014.09.043.

    Article  CAS  PubMed  Google Scholar 

  46. Mahil SK, Twelves S, Farkas K, Setta-Kaffetzi N, Burden AD, Gach JE, et al. AP1S3 mutations cause skin autoinflammation by disrupting keratinocyte autophagy and up-regulating IL-36 production. J Invest Dermatol. 2016;136:2251–9. https://doi.org/10.1016/j.jid.2016.06.618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Akiyama M. Autoinflammatory keratinization diseases (AiKDs): Expansion of disorders to be included. Front Immunol. 2020;11:280. https://doi.org/10.3389/fimmu.2020.00280.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhou L, Todorovic V. Interleukin-36: structure, signaling and function. Adv Exp Med Biol. 2021;21:191–210. https://doi.org/10.1007/5584_2020_488.

    Article  CAS  PubMed  Google Scholar 

  49. Mercurio L, Morelli M, Scarponi C, Eisenmesser EZ, Doti N, Pagnanelli G, et al. IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death Dis. 2018;9:1104. https://doi.org/10.1038/s41419-018-1143-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Catapano M, Vergnano M, Romano M, Mahil SK, Choon SE, Burden AD, et al. IL-36 promotes systemic IFN-I responses in severe forms of psoriasis. J Invest Dermatol. 2020;140:816-26.e3. https://doi.org/10.1016/j.jid.2019.08.444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang WM, Jin HZ. Role of neutrophils in psoriasis. J Immunol Res. 2020;2020:3709749. https://doi.org/10.1155/2020/3709749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Watanabe S, Iwata Y, Fukushima H, Saito K, Tanaka Y, Hasegawa Y, et al. Neutrophil extracellular traps are induced in a psoriasis model of interleukin-36 receptor antagonist-deficient mice. Sci Rep. 2020;10:20149. https://doi.org/10.1038/s41598-020-76864-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Murakami M, Terui T. Palmoplantar pustulosis: Current understanding of disease definition and pathomechanism. J Dermatol Sci. 2020;98:13–9. https://doi.org/10.1016/j.jdermsci.2020.03.003.

    Article  CAS  PubMed  Google Scholar 

  54. Xiaoling Y, Chao W, Wenming W, Feng L, Hongzhong J. Interleukin (IL)-8 and IL-36γ but not IL-36Ra are related to acrosyringia in pustule formation associated with palmoplantar pustulosis. Clin Exp Dermatol. 2019;44:52–7. https://doi.org/10.1111/ced.13689.

    Article  CAS  PubMed  Google Scholar 

  55. Sidoroff A, Halevy S, Bavinck JN, Vaillant L, Roujeau JC. Acute generalized exanthematous pustulosis (AGEP): a clinical reaction pattern. J Cutan Pathol. 2001;28:113–9. https://doi.org/10.1034/j.1600-0560.2001.028003113.x.

    Article  CAS  PubMed  Google Scholar 

  56. Feldmeyer L, Heidemeyer K, Yawalkar N. Acute generalized exanthematous pustulosis: pathogenesis, genetic background, clinical variants and therapy. Int J Mol Sci. 2016;17:1214. https://doi.org/10.3390/ijms17081214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meier-Schiesser B, Feldmeyer L, Jankovic D, Mellett M, Satoh TK, Yerly D, et al. Culprit drugs induce specific IL-36 overexpression in acute generalized exanthematous pustulosis. J Invest Dermatol. 2019;139:848–58. https://doi.org/10.1016/j.jid.2018.10.023.

    Article  CAS  PubMed  Google Scholar 

  58. Nakai N, Sugiura K, Akiyama M, Katoh N. Acute generalized exanthematous pustulosis caused by dihydrocodeine phosphate in a patient with psoriasis vulgaris and a heterozygous IL36RN mutation. JAMA Dermatol. 2015;151:311–5. https://doi.org/10.1001/jamadermatol.2014.3002.

    Article  PubMed  Google Scholar 

  59. Vergnano M, Mockenhaupt M, Benzian-Olsson N, Paulmann M, Grys K, Mahil SK, et al. Loss-of-function myeloperoxidase mutations are associated with increased neutrophil counts and pustular skin disease. Am J Hum Genet. 2020;107:539–43. https://doi.org/10.1016/j.ajhg.2020.06.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. von Laffert M, Helmbold P, Wohlrab J, Fiedler E, Stadie V, Marsch WC. Hidradenitis suppurativa (acne inversa): early inflammatory events at terminal follicles and at interfollicular epidermis. Exp Dermatol. 2010;19:533–7. https://doi.org/10.1111/j.1600-0625.2009.00915.x.

    Article  Google Scholar 

  61. Ainscough JS, Macleod T, McGonagle D, Brakefield R, Baron JM, Alase A, et al. Cathepsin S is the major activator of the psoriasis-associated proinflammatory cytokine IL-36gamma. Proc Natl Acad Sci USA. 2017;114:E2748–57. https://doi.org/10.1073/pnas.1620954114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hessam S, Sand M, Gambichler T, Skrygan M, Rüddel I, Bechara FG. Interleukin-36 in hidradenitis suppurativa: evidence for a distinctive proinflammatory role and a key factor in the development of an inflammatory loop. Br J Dermatol. 2018;178:761–7. https://doi.org/10.1111/bjd.16019.

    Article  CAS  PubMed  Google Scholar 

  63. Thomi R, Kakeda M, Yawalkar N, Schlapbach C, Hunger RE. Increased expression of the interleukin-36 cytokines in lesions of hidradenitis suppurativa. J Eur Acad Dermatol Venereol. 2017;31:2091–6. https://doi.org/10.1111/jdv.14389.

    Article  CAS  PubMed  Google Scholar 

  64. Di Caprio R, Balato A, Caiazzo G, Lembo S, Raimondo A, Fabbrocini G, et al. IL-36 cytokines are increased in acne and hidradenitis suppurativa. Arch Dermatol Res. 2017;309:673–8. https://doi.org/10.1007/s00403-017-1769-5.

    Article  CAS  PubMed  Google Scholar 

  65. Sims JE, Smith DE. The IL-1 family: regulators of immunity. Nat Rev Immunol. 2010;10:89–102. https://doi.org/10.1038/nri2691.

    Article  CAS  PubMed  Google Scholar 

  66. Wolk K, Brembach TC, Šimaitė D, Bartnik E, Cucinotta S, Pokrywka A, et al. Activity and components of the granulocyte colony-stimulating factor pathway in hidradenitis suppurativa. Br J Dermatol. 2021;185:164–76. https://doi.org/10.1111/bjd.19795.

    Article  CAS  PubMed  Google Scholar 

  67. Yang J, Wang L, Huang Y, Liu K, Lu C, Si N, et al. Keratin 5-Cre-driven deletion of Ncstn in an acne inversa-like mouse model leads to a markedly increased IL-36a and Sprr2 expression. Front Med. 2019;14:305–17. https://doi.org/10.1007/s11684-019-0722-8.

    Article  PubMed  Google Scholar 

  68. Paller AS, Renert-Yuval Y, Suprun M, Esaki H, Oliva M, Huynh TN, et al. An IL-17-dominant immune profile is shared across the major orphan forms of ichthyosis. J Allergy Clin Immunol. 2017;139:152–65. https://doi.org/10.1016/j.jaci.2016.07.019.

    Article  CAS  PubMed  Google Scholar 

  69. Akiyama M. Understanding immune profiles in ichthyosis may lead to novel therapeutic targets. J Allergy Clin Immunol. 2022;149:1210–2. https://doi.org/10.1016/j.jaci.2022.02.010.

    Article  CAS  PubMed  Google Scholar 

  70. Malik K, He H, Huynh TN, Tran G, Mueller K, Doytcheva K, et al. Ichthyosis molecular fingerprinting shows profound TH-17 skewing and a unique barrier genomic signature. J Allergy Clin Immunol. 2019;143:604–18. https://doi.org/10.1016/j.jaci.2018.03.021.

    Article  CAS  PubMed  Google Scholar 

  71. Fontao L, Laffitte E, Briot A, Kaya G, Roux-Lombard P, Fraitag S, et al. Infliximab infusions for Netherton syndrome: sustained clinical improvement correlates with a reduction of thymic stromal lymphopoietin levels in the skin. J Invest Dermatol. 2011;131:1947–50. https://doi.org/10.1038/jid.2011.124.

    Article  CAS  PubMed  Google Scholar 

  72. Akagi A, Kitoh A, Moniaga CS, Fujimoto A, Fujikawa H, Shimomura Y, et al. Case of Netherton syndrome with an elevated serum thymus and activation-regulated chemokine level. J Dermatol. 2013;40:752–3. https://doi.org/10.1111/1346-8138.12209.

    Article  PubMed  Google Scholar 

  73. Yalcin AD. A case of Netherton syndrome: successful treatment with omalizumab and pulse prednisolone and its effects on cytokines and immunoglobulin levels. Immunopharmacol Immunotoxicol. 2016;38:162–6. https://doi.org/10.3109/08923973.2015.1115518.

    Article  PubMed  Google Scholar 

  74. Murase Y, Takeichi T, Kawamoto A, Tanahashi K, Okuno Y, Takama H, et al. Reduced stratum corneum acylceramides in autosomal recessive congenital ichthyosis with a NIPAL4 mutation. J Dermatol Sci. 2020;97:50–6. https://doi.org/10.1016/j.jdermsci.2019.12.001.

    Article  CAS  PubMed  Google Scholar 

  75. Barbieux C, Bonnet des Claustres M, Fahrner M, Petrova E, Tsoi LC, Gouin O, et al. Netherton syndrome subtypes share IL-17/IL-36 signature with distinct IFN-α and allergic responses. J Allergy Clin Immunol. 2022;149:1358–72. https://doi.org/10.1016/j.jaci.2021.08.024.

    Article  CAS  PubMed  Google Scholar 

  76. Quaranta M, Knapp B, Garzorz N, Mattii M, Pullabhatla V, Pennino D, et al. Intraindividual genome expression analysis reveals a specific molecular signature of psoriasis and eczema. Sci Transl Med. 2014;6:244ra90. https://doi.org/10.1126/scitranslmed.3008946.

    Article  CAS  PubMed  Google Scholar 

  77. Suárez-Fariñas M, Ungar B, Correa da Rosa J, Ewald DA, Rozenblit M, Gonzalez J, et al. RNA sequencing atopic dermatitis transcriptome profiling provides insights into novel disease mechanisms with potential therapeutic implications. J Allergy Clin Immunol. 2015;135:1218–27. https://doi.org/10.1016/j.jaci.2015.03.003.

    Article  CAS  PubMed  Google Scholar 

  78. Tsoi LC, Rodriguez E, Stölzl D, Wehkamp U, Sun J, Gerdes S, et al. Progression of acute-to-chronic atopic dermatitis is associated with quantitative rather than qualitative changes in cytokine responses. J Allergy Clin Immunol. 2020;145:1406–15. https://doi.org/10.1016/j.jaci.2019.11.047.

    Article  CAS  PubMed  Google Scholar 

  79. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and atopic dermatitis: a complex and evolving relationship. Trends Microbiol. 2018;26:484–97. https://doi.org/10.1016/j.tim.2017.11.008.

    Article  CAS  PubMed  Google Scholar 

  80. Liu H, Archer NK, Dillen CA, Wang Y, Ashbaugh AG, Ortines RV, et al. Staphylococcus aureus epicutaneous exposure drives skin inflammation via IL-36-mediated T cell responses. Cell Host Microbe. 2017;22:653-66.e5. https://doi.org/10.1016/j.chom.2017.10.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Nakagawa S, Matsumoto M, Katayama Y, Oguma R, Wakabayashi S, Nygaard T, et al. Staphylococcus aureus virulent PSMα peptides induce keratinocyte alarmin release to orchestrate IL-17-dependent skin inflammation. Cell Host Microbe. 2017;22:667-77.e5. https://doi.org/10.1016/j.chom.2017.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Patrick GJ, Liu H, Alphonse MP, Dikeman DA, Youn C, Otterson JC, et al. Epicutaneous Staphylococcus aureus induces IL-36 to enhance IgE production and ensuing allergic disease. J Clin Invest. 2021;131: e143334. https://doi.org/10.1172/JCI143334.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Mohamed El Esawy F, Ali Mohammed S, Nasar Zargon Nasar E, Hemdan Mostafa S, Elhabak DM. Environmental, inflammatory, and anti-inflammatory squad in acne vulgaris pathogenesis: AhR, IL-36, and IL-38. J Cosmet Dermatol. 2022;21:3038–45. https://doi.org/10.1111/jocd.14542.

    Article  PubMed  Google Scholar 

  84. Satoh TK, Mellett M, Meier-Schiesser B, Fenini G, Otsuka A, Beer HD, et al. IL-36γ drives skin toxicity induced by EGFR/MEK inhibition and commensal Cutibacterium acnes. J Clin Invest. 2020;130:1417–30. https://doi.org/10.1172/JCI128678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ly K, Smith MP, Thibodeaux Q, Reddy V, Liao W, Bhutani T. Anti IL-17 in psoriasis. Expert Rev Clin Immunol. 2019;15(11):1185–94. https://doi.org/10.1080/1744666X.2020.1679625.

    Article  CAS  PubMed  Google Scholar 

  86. Pfaff CM, Marquardt Y, Fietkau K, Baron JM, Lüscher B. The psoriasis-associated IL-17A induces and cooperates with IL-36 cytokines to control keratinocyte differentiation and function. Sci Rep. 2017;7(1):15631. https://doi.org/10.1038/s41598-017-15892-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis—bridging the gap? J Clin Invest. 2021;131(2): e144336. https://doi.org/10.1172/JCI144336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Mahil SK, Catapano M, Di Meglio P, Dand N, Ahlfors H, Carr IM, et al. An analysis of IL-36 signature genes and individuals with IL1RL2 knockout mutations validates IL-36 as a psoriasis therapeutic target. Sci Transl Med. 2017;9:2514. https://doi.org/10.1126/scitranslmed.aan2514.

    Article  CAS  Google Scholar 

  89. Novel Drug Approvals for 2022. US FDA; 2023. https://www.fda.gov/drugs/new-drugs-fda-cders-new-molecular-entities-and-new-therapeutic-biological-products/novel-drug-approvals-2022. Accessed 2 Feb 2023.

  90. Blair HA. Spesolimab: first approval. Drugs. 2022;82(17):1681–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Baum P, Visvanathan S, Garcet S, Roy J, Schmid R, Bossert S, Lang B, Bachelez H, Bissonnette R, Thoma C, Krueger JG. Pustular psoriasis: molecular pathways and effects of spesolimab in generalized pustular psoriasis. J Allergy Clin Immunol. 2022;149(4):1402–12. https://doi.org/10.1016/j.jaci.2021.09.035.

    Article  CAS  PubMed  Google Scholar 

  92. Bachelez H, Choon SE, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. Inhibition of the interleukin-36 pathway for the treatment of generalized pustular psoriasis. N Engl J Med. 2019;380:981–3. https://doi.org/10.1056/NEJMc1811317.

    Article  PubMed  Google Scholar 

  93. Bachelez H, Choon SE, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. Effisayil 1 trial investigators. Trial of spesolimab for generalized pustular psoriasis. N Engl J Med. 2021;385:2431–40. https://doi.org/10.1056/NEJMoa2111563.

    Article  CAS  PubMed  Google Scholar 

  94. Choon SE, Lebwohl MG, Marrakchi S, Burden AD, Tsai TF, Morita A, et al. Study protocol of the global Effisayil 1 Phase II, multicentre, randomised, double-blind, placebo-controlled trial of spesolimab in patients with generalized pustular psoriasis presenting with an acute flare. BMJ Open. 2021;11: e043666. https://doi.org/10.1136/bmjopen-2020-043666.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Morita A, Choon SE, Bachelez H, Anadkat MJ, Marrakchi S, Zheng M, et al. Design of Effisayil™ 2: a randomized, double-blind, placebo-controlled study of spesolimab in preventing flares in patients with generalized pustular psoriasis. Dermatol Ther (Heidelb). 2023;13(1):347–59.

    Article  PubMed  Google Scholar 

  96. Mrowietz U, Burden AD, Pinter A, Reich K, Schäkel K, Baum P, et al. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with palmoplantar pustulosis: results of a phase IIa, multicenter, double-blind, randomized, placebo-controlled pilot study. Dermatol Ther (Heidelb). 2021;11:571–85. https://doi.org/10.1007/s13555-021-00504-0.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Burden A, Bissonnette R, Navarini A, Murakami M, Morita A, Mozzicato S, et al. 32923 A multicenter, double-blind, randomized, placebo-controlled, phase IIb dose-finding study to evaluate efficacy and safety of spesolimab in patients with moderate-to-severe palmoplantar pustulosis. J Am Acad Dermatol. 2022;87(3 Suppl):AB131.

    Article  Google Scholar 

  98. Misiak-Galazka M, Zozula J, Rudnicka L. Palmoplantar pustulosis: Recent advances in etiopathogenesis and emerging treatments. Am J Clin Dermatol. 2020;21:355–70. https://doi.org/10.1007/s40257-020-00503-5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Bissonnette R, Abramovits W, Saint-Cyr Proulx É, Lee P, Guttman-Yassky E, Zovko E, et al. Spesolimab, an anti-interleukin-36 receptor antibody, in patients with moderate-to-severe atopic dermatitis: Results from a multicentre, randomized, double-blind, placebo-controlled, phase IIa study. J Eur Acad Dermatol Venereol. 2023;37(3):549–57. https://doi.org/10.1111/jdv.18727.

    Article  CAS  PubMed  Google Scholar 

  100. Khanskaya I, Pinkstaff J, Marino MH, Savall T, Li J, Londei M. A phase 1 study of ANB019, an anti-IL-36 receptor monoclonal antibody, in healthy volunteers. AnaptysBio; 2018. https://www2.anaptysbio.com/wp-content/uploads/ANB019-Phase-1-Study-Poster-EAACI-2018.pdf. Accessed 2 Feb 2023.

  101. Gudjonsson J, Randazzo B, Zhou J. 34617 Imsidolimab in the treatment of adult subjects with generalized pustular psoriasis: design of a pivotal phase 3 clinical trial and a long-term extension study. J Am Acad Dermatol. 2022;87(3 Suppl):AB70.

    Article  Google Scholar 

  102. About 008. INMAGENE; 2022. https://www.inmagenebio.com/zokibep.html?id=fc074bee-425d-4f55-ab6a-6064f67bf751. Accessed 2 Feb 2023.

  103. Iznardo H, Puig L. Exploring the role of IL-36 cytokines as a new target in psoriatic disease. Int J Mol Sci. 2021;22:4344. https://doi.org/10.3390/ijms22094344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Ågerstam H, Hansen N, von Palffy S, Sandén C, Reckzeh K, Karlsson C, et al. IL1RAP antibodies block IL-1-induced expansion of candidate CML stem cells and mediate cell killing in xenograft models. Blood. 2016;128:2683–93. https://doi.org/10.1182/blood-2015-11-679985.

    Article  CAS  PubMed  Google Scholar 

  105. Chackerian AA, Oldham ER, Murphy EE, Schmitz J, Pflanz S, Kastelein RA. IL-1 receptor accessory protein and ST2 comprise the IL-33 receptor complex. J Immunol. 2007;179(4):2551–5. https://doi.org/10.4049/jimmunol.179.4.2551.

    Article  CAS  PubMed  Google Scholar 

  106. Ganesan R, Raymond EL, Mennerich D, Woska JR Jr, Caviness G, Grimaldi C, et al. Generation and functional characterization of anti-human and anti-mouse IL-36R antagonist monoclonal antibodies. MAbs. 2017;9:1143–54. https://doi.org/10.1080/19420862.2017.1353853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Grönberg C, Rattik S, Kunz M, Trinh-Minh T, Tran-Manh C, Zhou X, et al. Blocking IL-1, IL-33 and IL-36 signaling with the anti-IL1RAP antibody mCAN10 ameliorates inflammation and fibrosis in preclinical models of systemic sclerosis [abstract]. Arthritis Rheumatol. 2022;74(Suppl):9.

    Google Scholar 

  108. Almirall’s Full-Year 2021 Results. Almirall; 2022. https://www.almirall.com/newsroom/news/almirall-full-year-2021-results. Accessed 2 Feb 2023.

  109. Todorović V, Su Z, Putman CB, Kakavas SJ, Salte KM, McDonald HA, et al. Small molecule IL-36γ antagonist as a novel therapeutic approach for plaque psoriasis. Sci Rep. 2019;9:9089. https://doi.org/10.1038/s41598-019-45626-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Akiyama.

Ethics declarations

Funding

Masashi Akiyama is supported by Grant-in-Aid for Scientific Research (B) 21H02941 from the Japan Society for the Promotion of Science (JSPS) and by a grant from the Ministry of Health, Labor and Welfare of Japan (Health and Labor Sciences Research Grant for Research on Intractable Diseases: 20FC1052).

Conflicts of interest/competing interests

Masashi Akiyama has received a research grant from Boehringer Ingelheim, Novartis Japan and Maruho, and payment for lectures from Maruho and Sanofi. Ryo Fukaura reports no potential conflicts of interest or financial disclosures that are pertinent to this article.

Ethics approval

Ethics approval is not applicable to this article as no human or animal subjects were analyzed in this review.

Consent to participate

Consent to participate is not applicable to this article as no human or animal subjects were analyzed in this review.

Consent for publication

Consent for publication is not applicable to this article as no human or animal subjects were analyzed in this review.

Availability of data and material

Data sharing is not applicable to this article as no new data were created or analyzed in this study.

Code availability

Not applicable to this article as no new data were created or analyzed with code in this study.

Author contributions

All authors contributed to the literature review, writing, and editing of this article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fukaura, R., Akiyama, M. Targeting IL-36 in Inflammatory Skin Diseases. BioDrugs 37, 279–293 (2023). https://doi.org/10.1007/s40259-023-00587-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-023-00587-5

Navigation