Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256(5517):495–7.
Article
Google Scholar
Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575–81.
CAS
Article
Google Scholar
Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228(4705):1315–7.
CAS
Article
Google Scholar
Chen K, Arnold FH. Tuning the activity of an enzyme for unusual environments: sequential random mutagenesis of subtilisin E for catalysis in dimethylformamide. Proc Natl Acad Sci USA. 1993;90(12):5618–22.
CAS
Article
Google Scholar
Jones PT, Dear PH, Foote J, Neuberger MS, Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature. 1986;321(6069):522–5. https://doi.org/10.1038/321522a0.
CAS
Article
PubMed
Google Scholar
Binz HK, Amstutz P, Plückthun A. Engineering novel binding proteins from nonimmunoglobulin domains. Nat Biotechnol. 2005;23(10):1257–68. https://doi.org/10.1038/nbt1127.
CAS
Article
PubMed
Google Scholar
Binz HK, Stumpp MT, Forrer P, Amstutz P, Plückthun A. Designing repeat proteins: well-expressed, soluble and stable proteins from combinatorial libraries of consensus ankyrin repeat proteins. J Mol Biol. 2003;332(2):489–503.
CAS
Article
Google Scholar
Kohl A, Binz HK, Forrer P, Stumpp MT, Plückthun A, Grütter MG. Designed to be stable: crystal structure of a consensus ankyrin repeat protein. Proc Natl Acad Sci USA. 2003;100(4):1700–5. https://doi.org/10.1073/pnas.0337680100.
CAS
Article
PubMed
Google Scholar
Bork P. Hundreds of ankyrin-like repeats in functionally diverse proteins: mobile modules that cross phyla horizontally? Proteins. 1993;17(4):363–74. https://doi.org/10.1002/prot.340170405.
CAS
Article
PubMed
Google Scholar
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. The sequence of the human genome. Science. 2001;291(5507):1304–51. https://doi.org/10.1126/science.1058040.
CAS
Article
Google Scholar
Forrer P, Binz HK, Stumpp MT, Plückthun A. Consensus design of repeat proteins. ChemBioChem. 2004;5(2):183–9. https://doi.org/10.1002/cbic.200300762.
CAS
Article
PubMed
Google Scholar
Mosavi LK, Minor DL Jr, Peng ZY. Consensus-derived structural determinants of the ankyrin repeat motif. Proc Natl Acad Sci USA. 2002;99(25):16029–34. https://doi.org/10.1073/pnas.252537899.
CAS
Article
PubMed
Google Scholar
Binz HK, Bakker TR, Phillips DJ, Cornelius A, Zitt C, Göttler T, et al. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin(R) drug candidate. MAbs. 2017;9(8):1262–9. https://doi.org/10.1080/19420862.2017.1305529.
CAS
Article
PubMed
PubMed Central
Google Scholar
Binz HK, Amstutz P, Kohl A, Stumpp MT, Briand C, Forrer P, et al. High-affinity binders selected from designed ankyrin repeat protein libraries. Nat Biotechnol. 2004;22(5):575–82. https://doi.org/10.1038/nbt962.
CAS
Article
PubMed
Google Scholar
Plückthun A. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu Rev Pharmacol Toxicol. 2015;55:489–511. https://doi.org/10.1146/annurev-pharmtox-010611-134654.
CAS
Article
PubMed
Google Scholar
Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C, Martin G, et al. Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis. 2013;16(1):101–11. https://doi.org/10.1007/s10456-012-9302-0.
CAS
Article
PubMed
Google Scholar
Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC, McKern NM, et al. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J Mol Biol. 2007;369(4):1015–28. https://doi.org/10.1016/j.jmb.2007.03.028.
CAS
Article
PubMed
Google Scholar
Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D, Phillips DJ, et al. Half-life extension using serum albumin-binding DARPin(R) domains. Protein Eng Des Sel. 2017;30(9):583–91. https://doi.org/10.1093/protein/gzx022.
CAS
Article
PubMed
Google Scholar
Schütz M, Batyuk A, Klenk C, Kummer L, de Picciotto S, Gulbakan B, et al. Generation of fluorogen-activating designed ankyrin repeat proteins (FADAs) as versatile sensor tools. J Mol Biol. 2016;428(6):1272–89. https://doi.org/10.1016/j.jmb.2016.01.017.
CAS
Article
PubMed
Google Scholar
Kohl A, Amstutz P, Parizek P, Binz HK, Briand C, Capitani G, et al. Allosteric inhibition of aminoglycoside phosphotransferase by a designed ankyrin repeat protein. Structure. 2005;13(8):1131–41. https://doi.org/10.1016/j.str.2005.04.020.
CAS
Article
PubMed
Google Scholar
Sennhauser G, Amstutz P, Briand C, Storchenegger O, Grütter MG. Drug export pathway of multidrug exporter AcrB revealed by DARPin inhibitors. PLoS Biol. 2007;5(1):e7. https://doi.org/10.1371/journal.pbio.0050007.
CAS
Article
PubMed
Google Scholar
Thieltges KM, Avramovic D, Piscitelli CL, Markovic-Mueller S, Binz HK, Ballmer-Hofer K. Characterization of a drug-targetable allosteric site regulating vascular endothelial growth factor signaling. Angiogenesis. 2018;21(3):533–43. https://doi.org/10.1007/s10456-018-9606-9.
CAS
Article
PubMed
Google Scholar
Hober S, Lindbo S, Nilvebrant J. Bispecific applications of non-immunoglobulin scaffold binders. Methods. 2019;154:143–52. https://doi.org/10.1016/j.ymeth.2018.09.010.
CAS
Article
PubMed
Google Scholar
Gebauer M, Skerra A. Engineered protein scaffolds as next-generation therapeutics. Annu Rev Pharmacol Toxicol. 2020;60:391–415. https://doi.org/10.1146/annurev-pharmtox-010818-021118.
CAS
Article
PubMed
Google Scholar
Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64. https://doi.org/10.1016/j.cell.2019.01.021.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodrigues GA, Mason M, Christie LA, Hansen C, Hernandez LM, Burke J, et al. Functional characterization of abicipar-pegol, an anti-VEGF DARP in therapeutic that potently inhibits angiogenesis and vascular permeability. Invest Ophthalmol Vis Sci. 2018;59(15):5836–46. https://doi.org/10.1167/iovs.18-25307.
CAS
Article
PubMed
Google Scholar
Avery RL, Castellarin AA, Steinle NC, Dhoot DS, Pieramici DJ, See R, et al. Systemic pharmacokinetics and pharmacodynamics of intravitreal aflibercept, bevacizumab, and ranibizumab. Retina. 2017;37(10):1847–58. https://doi.org/10.1097/IAE.0000000000001493.
CAS
Article
PubMed
PubMed Central
Google Scholar
Callanan D, Kunimoto D, Maturi RK, Patel SS, Staurenghi G, Wolf S, et al. Double-masked, randomized, phase 2 evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in neovascular age-related macular degeneration. J Ocul Pharmacol Ther. 2018. https://doi.org/10.1089/jop.2018.0062.
Article
PubMed
PubMed Central
Google Scholar
Seal JR, Ekawardhani S, Schlegel A, Stumpp MT, Binz HK, Attar M, editors. Pegylation of abicipar increases vitreal half-life, supporting a potential for up to 3 month duration of action in the clinic. In: The Association for Research in Vision and Ophthalmology annual meeting; 2018; Honolulu, Hawaii.
Luu KT, Seal JR, Attar M. A mechanistic and translational pharmacokinetic-pharmacodynamic model of abicipar pegol and vascular endothelial growth factor inhibition. J Pharmacol Exp Ther. 2020;373(2):184–92. https://doi.org/10.1124/jpet.119.263178.
CAS
Article
PubMed
Google Scholar
Souied EH, Devin F, Mauget-Faysse M, Kolar P, Wolf-Schnurrbusch U, Framme C, et al. Treatment of exudative age-related macular degeneration with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol. 2014;158(4):724–32e2. https://doi.org/10.1016/j.ajo.2014.05.037.
CAS
Article
PubMed
Google Scholar
Campochiaro PA, Channa R, Berger BB, Heier JS, Brown DM, Fiedler U, et al. Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am J Ophthalmol. 2013;155(4):697–704, e1–2. https://doi.org/10.1016/j.ajo.2012.09.032.
CAS
Article
PubMed
Google Scholar
Kunimoto D, Yoon YH, Wykoff CC, Chang A, Khurana RN, Maturi RK. Efficacy and safety of abicipar in neovascular age-related macular degeneration: 52-week results of phase 3 randomized controlled study. Ophthalmology. 2020. https://doi.org/10.1016/j.ophtha.2020.03.035(in press).
Article
PubMed
Google Scholar
Naldini L, Weidner KM, Vigna E, Gaudino G, Bardelli A, Ponzetto C, et al. Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO J. 1991;10(10):2867–78.
CAS
Article
Google Scholar
Bottaro DP, Rubin JS, Faletto DL, Chan AM, Kmiecik TE, Vande Woude GF, et al. Identification of the hepatocyte growth factor receptor as the c-met proto-oncogene product. Science. 1991;251(4995):802–4.
CAS
Article
Google Scholar
Sennino B, Ishiguro-Oonuma T, Wei Y, Naylor RM, Williamson CW, Bhagwandin V, et al. Suppression of tumor invasion and metastasis by concurrent inhibition of c-Met and VEGF signaling in pancreatic neuroendocrine tumors. Cancer Discov. 2012;2(3):270–87. https://doi.org/10.1158/2159-8290.CD-11-0240.
CAS
Article
PubMed
PubMed Central
Google Scholar
Spigel DR, Ervin TJ, Ramlau RA, Daniel DB, Goldschmidt JH Jr, Blumenschein GR Jr, et al. Randomized phase II trial of Onartuzumab in combination with erlotinib in patients with advanced non-small-cell lung cancer. J Clin Oncol. 2013;31(32):4105–14. https://doi.org/10.1200/JCO.2012.47.4189.
CAS
Article
PubMed
PubMed Central
Google Scholar
Spigel DR, Edelman MJ, O'Byrne K, Paz-Ares L, Mocci S, Phan S, et al. Results from the phase III randomized trial of onartuzumab plus erlotinib versus erlotinib in previously treated stage IIIB or IV non-small-cell lung cancer: METLung. J Clin Oncol. 2017;35(4):412–20. https://doi.org/10.1200/JCO.2016.69.2160.
CAS
Article
PubMed
Google Scholar
Fiedler U, Ekawardhani S, Cornelius A, Gilboy P, Bakker TR, Dolado I, et al. MP0250, a VEGF and HGF neutralizing DARPin((R)) molecule shows high anti-tumor efficacy in mouse xenograft and patient-derived tumor models. Oncotarget. 2017;8(58):98371–83. https://doi.org/10.18632/oncotarget.21738.
Article
PubMed
PubMed Central
Google Scholar
Azaro A, Rodon J, Middleton MR, Baird RD, Herrmann R, Fiedler U et al., editors. First-in-class phase I study evaluating MP0250, a VEGF and HGF neutralizing DARPin® molecule, in patients with advanced solid tumors. In: American Society of Clinical Oncology annual meeting; 2018.
Rodon J, Omlin A, Herbschleb KH, Garcia-Corbacho J, Steiner J, Dolado I et al., editors. First-in-human phase I study to evaluate MP0250, a DARPin® blocking HGF and VEGF, in patients with advanced solid tumors. In: AACR-NCI-EORTC international conference on molecular targets and cancer therapeutics; Boston, MA; 2015.
Middleton MR, Azaro A, Kumar S, Niedermann P, Rodon J, Herbschleb KH et al., editors. Interim results from the completed FIH Phase I dose escalation study evaluating MP0250, a multi-DARPin® drug candidate blocking HGF and VEGF, in patients with advanced solid tumors. In: European Society for Medical Oncology annual meeting; 2016.
Fernando NH, Hurwitz HI. Targeted therapy of colorectal cancer: clinical experience with bevacizumab. Oncologist. 2004;9(Suppl 1):11–8. https://doi.org/10.1634/theoncologist.9-suppl_1-11.
CAS
Article
PubMed
Google Scholar
Fiedler U, Dawson KM, Gilboy P, Stumpp MT, Tadjalli-Mehr K, Harstrick A, editors. MP0250, a bispecific VEGF- and HGF-blocking multi-DARPin*, in combination with bortezomib in multiple myeloma: preclinical rationale and phase 2 study outline. In: 21st Congress of the European Association of Hematology; Copenhagen, Denmark; 2016.
Rao L, De Veirman K, Giannico D, Saltarella I, Desantis V, Frassanito MA, et al. Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin((R)) protein MP0250: a preclinical study. Oncotarget. 2018;9(17):13366–81. https://doi.org/10.18632/oncotarget.24351.
Article
PubMed
PubMed Central
Google Scholar
Moschetta M, Basile A, Ferrucci A, Frassanito MA, Rao L, Ria R, et al. Novel targeting of phospho-cMET overcomes drug resistance and induces antitumor activity in multiple myeloma. Clin Cancer Res. 2013;19(16):4371–82. https://doi.org/10.1158/1078-0432.CCR-13-0039.
CAS
Article
PubMed
Google Scholar
Giuliani N, Storti P, Bolzoni M, Palma BD, Bonomini S. Angiogenesis and multiple myeloma. Cancer Microenviron. 2011;4(3):325–37. https://doi.org/10.1007/s12307-011-0072-9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ferrucci A, Moschetta M, Frassanito MA, Berardi S, Catacchio I, Ria R, et al. A HGF/cMET autocrine loop is operative in multiple myeloma bone marrow endothelial cells and may represent a novel therapeutic target. Clin Cancer Res. 2014;20(22):5796–807. https://doi.org/10.1158/1078-0432.CCR-14-0847.
CAS
Article
PubMed
Google Scholar
White D, Kassim A, Bhaskar B, Yi J, Wamstad K, Paton VE. Results from AMBER, a randomized phase 2 study of bevacizumab and bortezomib versus bortezomib in relapsed or refractory multiple myeloma. Cancer. 2013;119(2):339–47. https://doi.org/10.1002/cncr.27745.
CAS
Article
PubMed
Google Scholar
Wilson TR, Fridlyand J, Yan Y, Penuel E, Burton L, Chan E, et al. Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors. Nature. 2012;487(7408):505–9. https://doi.org/10.1038/nature11249.
CAS
Article
PubMed
PubMed Central
Google Scholar
Wader KF, Fagerli UM, Holt RU, Stordal B, Borset M, Sundan A, et al. Elevated serum concentrations of activated hepatocyte growth factor activator in patients with multiple myeloma. Eur J Haematol. 2008;81(5):380–3. https://doi.org/10.1111/j.1600-0609.2008.01130.x.
CAS
Article
PubMed
PubMed Central
Google Scholar
Szarejko M, Knop S, Schreder M, Goldschmidt H, Raab MS, Jurczyszyn A et al., editors. MP0250 in combination with bortezomib and dexamethasone in patients with relapsed-and-refractory multiple myeloma: First ssafety and early efficacy analysis of MP0250-CP201. In: European Hematological Association annual meeting; 2018.
Raab MS, Ria R, Schlenzka J, Krahnke T, Haunschild J, Hermann F et al., editors. MP0250—a dual inhibitor of VEGF and HGF—plus bortezomib + dexamethasone in a phase 2 open-label, single-arm, multicenter trial in patients with refractory and relapsed multiple myeloma (RRMM). In: European Society for Medical Oncology annual meeting; 2017.
Grzasko N, Knop S, Goldschmidt H, Raab MS, Jurczyszyn A, Duerig J et al., editors. The MP0250-CP201 MiRRoR study: a phase 2 study update of MP0250 plus bortezomib and dexamethasone in relapsed/refractory multiple myeloma (RRMM) patients previously exposed to proteasome inhibitors and immunomodulatory drugs. In: American Society of Hematology; Orlando, FL; 2019.
Padhy LC, Shih C, Cowing D, Finkelstein R, Weinberg RA. Identification of a phosphoprotein specifically induced by the transforming DNA of rat neuroblastomas. Cell. 1982;28(4):865–71.
CAS
Article
Google Scholar
Yan M, Schwaederle M, Arguello D, Millis SZ, Gatalica Z, Kurzrock R. HER2 expression status in diverse cancers: review of results from 37,992 patients. Cancer Metastasis Rev. 2015;34(1):157–64. https://doi.org/10.1007/s10555-015-9552-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Escriva-de-Romani S, Arumi M, Bellet M, Saura C. HER2-positive breast cancer: current and new therapeutic strategies. Breast. 2018;39:80–8. https://doi.org/10.1016/j.breast.2018.03.006.
Article
PubMed
Google Scholar
Baird RD, Omlin A, Kiemle-Kallee J, Fiedler U, Zitt C, Feuerstein D et al., editors. MP0274-CP101: a phase 1, first-in-human, single-arm, multi-center, open-label, dose escalation study to assess safety, tolerability, and pharmacokinetics of MP0274 in patients with advanced HER2-positive solid tumors. In: San Antonio Breast Cancer Symposium; San Antonio, TX; 2017.
Chester C, Sanmamed MF, Wang J, Melero I. Immunotherapy targeting 4–1BB: mechanistic rationale, clinical results, and future strategies. Blood. 2018;131(1):49–57. https://doi.org/10.1182/blood-2017-06-741041.
CAS
Article
PubMed
Google Scholar
Segal NH, Logan TF, Hodi FS, McDermott D, Melero I, Hamid O, et al. Results from an integrated safety analysis of urelumab, an agonist anti-CD137 monoclonal antibody. Clin Cancer Res. 2017;23(8):1929–36. https://doi.org/10.1158/1078-0432.CCR-16-1272.
CAS
Article
PubMed
Google Scholar
Muller D, Frey K, Kontermann RE. A novel antibody-4-1BBL fusion protein for targeted costimulation in cancer immunotherapy. J Immunother. 2008;31(8):714–22. https://doi.org/10.1097/CJI.0b013e31818353e9.
CAS
Article
PubMed
Google Scholar
Link A, Hepp J, Reichen C, Schildknecht P, Tosevski I, Taylor J et al., editors. Preclinical pharmacology of MP0310: a 4-1BB/FAP bispecific DARPin® drug candidate promoting tumor-restricted T cell co-stimulation. In: American Association for Cancer Research annual meeting; Chicago, Illinois; 2018.
Reichen C, Bessey R, DePasquale C, Imobersteg S, Béhé M, Blanc A et al., editors. FAP-mediated tumor accumulation of a T cell agonistic 4-1BB/FAP DARPin® drug candidate analyzed by SPECT/CT and quantitative biodistribution. In: American Association for Cancer Research annual meeting; Chicago, Illinois; 2018.
Tosevski I, Juglair L, Link A, Lemaillet G, Poulet H, Veitonmäki N et al., editors. Preclinical identification of the pharmacologically active dose range of the tumor targeted 4-1BB agonist MP0310. In: Society for ImmunoTherapy of Cancer annual meeting; Washington D.C.; 2018.
Fiedler U, Reichen C, Taylor J, Schildknecht P, Barsin S, Metz C et al., editors. Tumor-restricted immune-modulation by multispecific molecules from the DARPin® toolbox. In: American Association for Cancer Research annual meeting; Chicago, Illinois; 2018.
Rigamonti N, Schlegel A, Barsin S, Schwestermann J, Mangold S, Kaufmann Y et al., editors. Fibroblast activation protein (FAP)-selective delivery of CD40 agonistic DARPin® molecule for tumor-localized immune activation. In: Society for ImmunoTherapy of Cancer annual meeting; Washington D.C.; 2018.
Münch RC, Muth A, Muik A, Friedel T, Schmatz J, Dreier B, et al. Off-target-free gene delivery by affinity-purified receptor-targeted viral vectors. Nat Commun. 2015;6:6246. https://doi.org/10.1038/ncomms7246.
CAS
Article
PubMed
Google Scholar
Pecqueur L, Duellberg C, Dreier B, Jiang Q, Wang C, Plückthun A, et al. A designed ankyrin repeat protein selected to bind to tubulin caps the microtubule plus end. Proc Natl Acad Sci USA. 2012;109(30):12011–6. https://doi.org/10.1073/pnas.1204129109.
Article
PubMed
Google Scholar
Friedrich K, Hanauer JR, Prufer S, Münch RC, Volker I, Filippis C, et al. DARPin-targeting of measles virus: unique bispecificity, effective oncolysis, and enhanced safety. Mol Ther. 2013;21(4):849–59. https://doi.org/10.1038/mt.2013.16.
CAS
Article
PubMed
PubMed Central
Google Scholar
Münch RC, Mühlebach MD, Schaser T, Kneissl S, Jost C, Plückthun A, et al. DARPins: an efficient targeting domain for lentiviral vectors. Mol Ther. 2011;19(4):686–93. https://doi.org/10.1038/mt.2010.298.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hammill JA, VanSeggelen H, Helsen CW, Denisova GF, Evelegh C, Tantalo DG, et al. Designed ankyrin repeat proteins are effective targeting elements for chimeric antigen receptors. J Immunother Cancer. 2015;3:55. https://doi.org/10.1186/s40425-015-0099-4.
Article
PubMed
PubMed Central
Google Scholar
Siegler E, Li S, Kim YJ, Wang P. Designed ankyrin repeat proteins as Her2 targeting domains in chimeric antigen receptor-engineered T cells. Hum Gene Ther. 2017;28(9):726–36. https://doi.org/10.1089/hum.2017.021.
CAS
Article
PubMed
PubMed Central
Google Scholar
Verdurmen WP, Luginbuhl M, Honegger A, Plückthun A. Efficient cell-specific uptake of binding proteins into the cytoplasm through engineered modular transport systems. J Control Release. 2015;200:13–22. https://doi.org/10.1016/j.jconrel.2014.12.019.
CAS
Article
PubMed
Google Scholar
Molecular Partners A. Molecular partners initiates anti-COVID-19 therapeutic program leveraging multi-target binding of DARPin® proteins to neutralize SARS-CoV-2 virus. www.molecularpartners.com. 2020.
Molecular Partners A. Molecular partners confirms ultra-potent inhibition of SARS-CoV-2 live virus by anti-COVID-19 DARPin® candidates. www.molecularpartners.com. 2020.