Caliceti P, Veronese FM. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates. Adv Drug Delivery Rev. 2003;55:1261–77.
Jevševar S, Kunstelj M, Porekar VG. PEGylation of therapeutic proteins. Biotechnol J. 2010;5:113–28.
PubMed
Article
CAS
Google Scholar
Werle M, Bernkop-Schnurch A. Strategies to improve plasma half life time of peptide and protein drugs. Amino Acids. 2006;30:351–67.
CAS
PubMed
Article
Google Scholar
Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87:1409–39.
CAS
PubMed
Article
Google Scholar
Diao L, Meibohm B. Pharmacokinetics and pharmacokinetic—pharmacodynamic correlations of therapeutic peptides. Clin Pharmacokinet. 2013;52:855–68.
CAS
PubMed
Article
Google Scholar
Supersaxo A, Hein WR, Steffan H. Effect of molecular weight on the lymphatic absorption of water-soluble compounds following subcutaneous administration. Pharm Res. 1990;7:167–9.
CAS
PubMed
Article
Google Scholar
Tang L, Persky AM, Hochhaus G, et al. Pharmacokinetic aspects of biotechnology products. J Pharm Sci. 2004;93:2184–204.
CAS
PubMed
Article
Google Scholar
Andersen JT, Pehrson R, Tolmachev V, et al. Extending half-life by indirect targeting of the neonatal Fc receptor (FcRn) using a minimal albumin binding domain. J Biol Chem. 2011;286:5234–41.
PubMed Central
CAS
PubMed
Article
Google Scholar
O’Connor-Semmes RL, Lin J, Hodge RJ, et al. GSK2374697, a novel albumin-binding domain antibody (albudAb), extends systemic exposure of extendin-4: first study in humans—PK/PD and safety. Clin Pharmacol Ther. 2014;96:704–12.
PubMed
Article
CAS
Google Scholar
Sockolosky JT, Kivimae S, Szoka FC. Fusion of a short peptide that binds immunoglobulin G to a recombinant protein substantially increases its plasma half-life in mice. PLoS One. 2014;9:e102566.
PubMed Central
PubMed
Article
CAS
Google Scholar
Kontermann RE. Strategies to extend plasma half-lives of recombinant antibodies. BioDrugs. 2009;23:93–109.
CAS
PubMed
Article
Google Scholar
Kang JS, DeLuca PP, Lee KC. Emerging PEGylated drugs. Expert Opin Emerg Drugs. 2009;14:363–80.
CAS
PubMed
Article
Google Scholar
Pasut G, Veronese FM. Second-generation pharmaceutical proteins—EUFEPS workshop on optimizing biotech medicines. IDrugs. 2007;10:162–4.
PubMed
Google Scholar
Bendele A, Seely J, Richey C, et al. Short communication: renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–7.
CAS
PubMed
Article
Google Scholar
Fee CJ, Van Alstine JN. Purification of pegylated proteins. In: Janson J-C, editor. Protein purification: principles, high resolution methods, and applications. 3rd ed. New York: Wiley; 2011. p. 339–62.
Chapter
Google Scholar
MacDougall IC, Gray SJ, Elston O, et al. Pharmacokinetics of novel erythropoiesis stimulating protein compared with epoetin alfa in dialysis patients. J Am Soc Nephrol. 1999;10:2392–5.
CAS
PubMed
Google Scholar
Schellenberger V, Wang CW, Geething NC, et al. A recombinant polypeptide extends the in vivo half-life of peptides and proteins in a tunable manner. Nat Biotechnol. 2009;27:1186–90.
CAS
PubMed
Article
Google Scholar
Somers G. Structural aspects of fusion proteins determining the level of commercial success. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 87–121.
Google Scholar
Beck A. Biosimilar, biobetter and next generation therapeutic antibodies. MAbs 2011;3:107–110.
Lan H, Li W, Fu Z, et al. Differential intracellular signaling properties of the growth hormone receptor induced by the activation of an anti-GHR antibody. Mol Cell Endrocrinol. 2014;390:54–64.
CAS
Article
Google Scholar
Beck A, Reichert, JM. Therapeutic Fc-fusion proteins and peptides as successful alternatives to antibodies. MAbs. 2011;3:1–2.
Czajkowsky DM, Hu J, Shao Z, et al. Fc-fusion proteins: new developments and future perspectives. EMBO Mol Med. 2012;4:1015–28.
PubMed Central
CAS
PubMed
Article
Google Scholar
Huang C. Receptor-Fc fusion therapeutics, traps, and Mimetibody™ technology. Curr Opin Biotechnol. 2009;20:692–9.
CAS
PubMed
Article
Google Scholar
Keefe D, Heartlein M, Josiah S. Transferrin fusion protein therapies: acetylcholine receptor-transferrin fusion protein as a model. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 345–56.
Google Scholar
Weimer T, Metzner HJ, Schulte S. Recombinant albumin fusion proteins. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 297–323.
Google Scholar
Walker A, Dunlevy G, Topley P. Albumin-binding fusion proteins in the development of novel long-acting therapeutics. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 325–43.
Google Scholar
Schlapschy M, Theobald I, Mack H, et al. Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng Des Sel. 2007;20:273–84.
CAS
PubMed
Article
Google Scholar
Schlapschy M, Binder U, Borger C, et al. PASylation: a biological alternative to PEGylation for extending the plasma half-life of pharmaceutically active proteins. Protein Eng Des Sel. 2013;26:489–501.
PubMed Central
CAS
PubMed
Article
Google Scholar
Floss DM, Schallau K, Rose-John S, et al. Elastin-like polypeptides revolutionize recombinant protein expression and their biomedical application. Trends Biotechnol. 2010;28:37–45.
CAS
PubMed
Article
Google Scholar
Floss DM, Conrad U, Rose-John S, et al. ELP-fusion technology for biopharmaceuticals. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 372–98.
Google Scholar
Mero A, Pasqualin M, Campisi M, et al. Conjugation of hyaluronan to proteins. Carb Polymers. 2013;92:2163–70.
CAS
Article
Google Scholar
Gregoriadis G, Jain S, Papaioannou I, et al. Improving the therapeutic efficacy of peptides and proteins: a role for polysialic acids. Int J Pharm. 2005;300:125–30.
CAS
PubMed
Article
Google Scholar
Duijkers IJ, Klipping C, Boerrigter PJ, et al. Single dose pharmacokinetics and effects on follicular growth and serum hormones of a long-acting recombinant FSH preparation (FSH-CTP) in healthy pituitary-suppressed females. Hum Reprod. 2002;17:1987–93.
CAS
PubMed
Article
Google Scholar
Fares FA, Suganuma N, Nishimori K, et al. Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin beta subunit to the follitropin beta subunit. Proc Natl Acad Sci USA. 1992;89:4304–8.
PubMed Central
CAS
PubMed
Article
Google Scholar
Fares F. Half-life extension through O-glycosylation. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 358–71.
Google Scholar
Doppalapudi VR, Tryder N, Li L, et al. Chemically programmed antibodies: endothelin receptor targeting CovX-bodies. Bioorg Med Chem Lett. 2007;17:501–6.
CAS
PubMed
Article
Google Scholar
Bhat A, Laurent O, Lappe R. CovX-bodies. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 956–70.
Google Scholar
Gow DJ, Sauter KA, Pridans, et al. Characterisation of a novel Fc conjugate of macrophage colony-stimulating factor. Mol Ther. 2014;22:1580–92.
PubMed Central
CAS
PubMed
Google Scholar
Smith BJ, Popplewell A, Athwal D, et al. Prolonged in vivo residence times of antibody fragments associated with albumin. Bioconjug Chem. 2001;12:750–6.
CAS
PubMed
Article
Google Scholar
Schmidt SR. Fusion proteins for half-life extension. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 178–201.
Chapter
Google Scholar
Yousefpour P, Chilkoti A. Co-opting biology to deliver drugs. Biotechnol Bioeng. 2014;111:1699–716.
PubMed Central
CAS
PubMed
Article
Google Scholar
Mannucci PM. Half-life extension technologies for haemostatic agents. Thromb Haemost. 2015;113:165–76.
PubMed
Article
Google Scholar
Ghetie V, Ward ES. Transcytosis and catabolism of antibody. Immunol Res. 2002;25:97–113.
CAS
PubMed
Article
Google Scholar
Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nature Rev Immunol. 2007;7:715–25.
CAS
Article
Google Scholar
Baker K, Qiao S-W, Kuo T, et al. Immune and non-immune functions of the (not so) neonatal Fc receptor, FcRn. Semin Immunopathol. 2009;31:223–6.
PubMed Central
CAS
PubMed
Article
Google Scholar
Giragossian C, Clark T, Piche-Nicholas N, et al. Neonatal Fc receptor and its role in the absorption, distribution, metabolism and excretion of immunoglobulin G-based biotherapeutics. Curr Drug Metab. 2013;14:764–90.
CAS
PubMed
Article
Google Scholar
Chaudhury C, Mehnaz S, Robinson JM, et al. The major histocompatability complex-related Fc receptor for IgG (FcRn) binds albumin and prolongs its lifespan. J Exp Med. 2003;197:315–22.
PubMed Central
CAS
PubMed
Article
Google Scholar
Chaudhury C, Brooks CL, Carter DC, et al. Albumin binding to FcRn: distinct from the FcRn-IgG interaction. Biochemistry. 2006;45:4983–90.
CAS
PubMed
Article
Google Scholar
Chen X, Lee H-F, Zaro JL, et al. Effects of receptor binding on plasma half-life of bifunctional transferrin fusion proteins. Mol Pharm. 2011;8:457–65.
PubMed Central
CAS
PubMed
Article
Google Scholar
Conrad U, Plagmann I, Malchow S, et al. ELPylated anti-human TNF therapeutic single-domain antibodies for prevention of lethal septic shock. Plant Biotechnol. 2011;9:22–31.
CAS
Article
Google Scholar
Huang Y-S, Wen X-F, Wu Y-L, et al. Engineering a pharmacologically superior form of granulocyte-colony-stimulating factor by fusion with gelatin-like protein polymer. Eur J Pharm Biopharm. 2010;72:435–41.
Article
CAS
Google Scholar
Kim J-K, Firan M, Radu CG, et al. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur J Immunol. 1999;29:2819–25.
CAS
PubMed
Article
Google Scholar
Strohl WR, Strohl LM. Therapeutic antibody engineering: current and future advances driving the strongest growth area in the pharma industry. Cambridge: Woodhead Publishing Series in Biomedicine No. 11; 2012.
Capon DJ, Chamow SM, Mordenti J, et al. Designing CD4 immunoadhesins for AIDS therapy. Nature. 1989;337:525–31.
CAS
PubMed
Article
Google Scholar
Huang C, Swanson RV. Peptide-Fc fusion therapeutics: applications and challenges. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 227–59.
Google Scholar
Shimamoto G, Gegg C, Boone T, et al. Peptibodies: a flexible alternative format to antibodies. mAbs 2012;4:586–591.
Schmidt SR. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013.
Book
Google Scholar
Dumont JA, Low S, Peters RT. Monomeric Fc fusions, impact on pharmacokinetic and biological activity of protein therapeutics. Biodrugs. 2006;20:151–60.
CAS
PubMed
Article
Google Scholar
Mei B, Low SC, Krassova S, et al. Monomeric Fc-fusion proteins. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 202–26.
Google Scholar
Shapiro AD, Ragni MV, Valentino LA, et al. Recombinant factor IX-Fc fusion protein (rFIX-Fc) demonstrates safety and prolonged activity in a phase 1/2a study in hemophilia B patients. Blood. 2012;119:666–72.
PubMed Central
CAS
PubMed
Article
Google Scholar
Powell JS, Pasi KJ, Ragni MV, et al. Phase 3 study of recombinant factor IX Fc fusion protein in hemophilia B. N Engl J Med. 2013;369:2313–23.
CAS
PubMed
Article
Google Scholar
Santagostino E, Negrier C, Klamroth R, et al. Safety and pharmacokinetics of a novel recombinant fusion protein linking coagulation factor IX with albumin (rIX-FP) in hemophila B patients. Blood. 2012;120:2405–11.
PubMed Central
CAS
PubMed
Article
Google Scholar
Carcao M. Changing paradigm of prophylaxis with longer acting factor concentrates. Haemophilia. 2014;20(Suppl 4):99–105.
CAS
PubMed
Article
Google Scholar
Powell JS, Josephson NC, Quon D, et al. Safety and prolonged activity of recombinant factor VIII Fc fusion in hemophilia A patients. Blood. 2012;119:3031–7.
PubMed Central
CAS
PubMed
Article
Google Scholar
Lorenz M, Evers A, Wagner M. Recent progress and future options in the development of GLP-1 receptor agonists for the treatment of diabesity. Bioorg Med Chem Lett. 2013;23:4011–8.
CAS
PubMed
Article
Google Scholar
Murphy KG, Dhillo WS, Bloom SR. Gut peptides in the regulation of food intake and energy homeostasis. Endocr Rev. 2006;27:719–27.
CAS
PubMed
Article
Google Scholar
Eng J, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venum: further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem. 1992;267:7402–5.
CAS
PubMed
Google Scholar
Glaesner W, Vick AM, Millican R, et al. Engineering and characterization of the long-acting glucagon-like peptide-1 anaglogue LY2189265, an Fc fusion protein. Diabetes Metab Res Rev. 2010;26:287–96.
CAS
PubMed
Article
Google Scholar
Trulicity® (dulaglutide) prescribing information. Eli Lilly. 2014. http://pi.lilly.com/us/trulicity-uspi.pdf. Accessed 18 Feb 2015.
Tanzeum® (albiglutide) prescribing information. GlaxoSmithKline LLC. 2014. https://www.gsksource.com/gskprm/htdocs/documents/TANZEUM-PI-MG-IFU-COMBINED.PDF. Accessed 18 Feb 2015.
Victoza® (liraglutide) prescribing information. Novo Nordisk A/S. 2013. http://www.novo-pi.com/victoza.pdf. Accessed 18 Feb 2015.
Byetta® (exenatide) prescribing information. AstraZeneca Pharmaceuticals LP. 2014. http://www.azpicentral.com/byetta/pi_byetta.pdf#page=1. Accessed 18 Feb 2015.
Bydureon® (exenatide extended release for injectable suspension) prescribing information. AstraZeneca Pharmaceuticals LP. 2014. http://www.azpicentral.com/bydureon/pi_bydureon.pdf#page=1. Accessed 18 Feb 2015.
Lyxumia®: EMA summary of product characteristics. Sanofi. 2013;1–92. http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002445/WC500140401.pdf. Accessed 18 Feb 2015.
Christiansen M, Matson M, Brazg R, et al. Weekly subcutaneous doses of Glymera (PB1023), a novel GLP-1 analogue reduces glucose exposure dose dependently. Amer Diabetes Aassoc Abstr. 2013;946P.
Bugelski PJ, Capocasale RJ, Makropoulos D, et al. CNTO 530: molecular pharmacology in human UT-7EPO cells and pharmacokinetics in mice. J Biotechnol. 2008;134:171–80.
CAS
PubMed
Article
Google Scholar
Wang Q, Chen K, Liu R, et al. Novel GLP-1 fusion chimera as potent long acting GLP-1 receptor agonist. PLoS One. 2010;5:e12734.
PubMed Central
PubMed
Article
CAS
Google Scholar
Tezel TH, Bodek E, Sonmez K, et al. Targeting tissue factor for immunotherapy of choroidal neovascularization by intravitreal delivery of factor VII-Fc chimeric antibody. Ocul Immunol Inflam. 2007;15:3–10.
CAS
Article
Google Scholar
Yee A, Gildersleeve RD, Gu S, et al. A von Willebrand factor fragment containing the D′D3 domains is sufficient to stabilize coagulation factor VIII in mice. Blood. 2014;124:445–52.
PubMed Central
CAS
PubMed
Article
Google Scholar
Zollner S, Schuermann D, Raquet E, et al. Pharmacological characteristics of a novel, recombinant fusion protein linking coagulation factor VIIa with albumin (rVIIa-FP). J Thromb Haemost. 2014;12:220–8.
PubMed Central
CAS
PubMed
Article
Google Scholar
Halpern W, Riccobene TA, Agostini H, et al. Albugranin, a recombinant human granulocyte cology stimulating factor (G-CSF) genetically fused to recombinant human albumin induces prolonged myelopoeitic effects in mice and monkeys. Pharm Res. 2002;19:1720–9.
CAS
PubMed
Article
Google Scholar
Geething NC, To W, Spink BJ, et al. Gcg-XTEN: an improved glucagon capable of preventing hypoglycemia without increasing baseline blood glucose. PLoS One. 2010;5:e10175.
PubMed Central
PubMed
Article
CAS
Google Scholar
Alters SE, McLaughlin B, Spink B, et al. GLP2-2G-XTEN: a pharmaceutical protein with improved serum half-life and efficacy in a rat Crohn’s disease model. PLoS One. 2013;7:e50630.
Article
CAS
Google Scholar
Lee CK, Yang S, Kang J, et al. Interferon-alpha (IFN-alpha) fused protein having IFN-alpha and a cytoplasmic transduction peptide. US Patent 2012:US20120134961 A1.
Choi J, Diao H, Feng Z-C, et al. A fusion protein derived from plants holds promising potential as a new oral therapy for type 2 diabetes. Plant Biotechnol J. 2014;12:425–35.
CAS
PubMed
Article
Google Scholar
Kim B-J, Zhou J, Martin B, et al. Transferrin fusion technology: a novel approach to prolonging biological half-life of insulinotropic peptides. J Pharmacol Exp Ther. 2010;334:682–92.
PubMed Central
CAS
PubMed
Article
Google Scholar
Wang Y, Shao J, Zaro J, et al. Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production. Diabetes. 2014;63:1779–88.
PubMed Central
CAS
PubMed
Article
Google Scholar
Kim Y-M, Lee SM, Chung H-S. Novel AGLP-1 albumin fusion protein as a long-lasting agent for type 2 diabetes. BMP Rep. 2013;46:606–10.
CAS
Article
Google Scholar
Kratz F. Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J Control Release. 2008;132:171–83.
CAS
PubMed
Article
Google Scholar
Yeh P, Landais D, Lemaitre M, et al. Design of yeast-secreted albumin derivatives for human therapy: biological and antiviral properties of a serum albumin-CD4 genetic conjugate. Proc Natl Acad Sci USA. 1992;89:1904–8.
PubMed Central
CAS
PubMed
Article
Google Scholar
Hollon T. HGS targets patent-expiring drugs. Nature Biotechnol. 2000;18:1238–9.
CAS
Article
Google Scholar
Schulte S. Half-life extension through albumin fusion technologies. Thromb Res. 2009;124(Suppl 2):S6–8.
CAS
PubMed
Article
Google Scholar
Schulte S. Innovative coagulation factors: albumin fusion technology and recombinant single-chain factor VIII. Thromb Res. 2013;131(Suppl 2):S2–6.
CAS
PubMed
Article
Google Scholar
Fanali G, di Masi A, Trezza V, et al. Human serum albumin: from bench to bedside. Mol Aspects Med. 2012;33:209–90.
CAS
PubMed
Article
Google Scholar
Sleep D, Cameron J, Evans LR. Albumin as a versatile platform for drug half-life extension. Biochim Biophys Acta. 2013;1830:5526–34.
CAS
PubMed
Article
Google Scholar
Metzner HJ, Pipe SW, Weimer T, et al. Extending the pharmacokinetic half-life of coagulation factors by fusion to recombinant albumin. Thromb Haemost. 2013;110:931–9.
CAS
PubMed
Article
Google Scholar
Nolte MW, Nichols TC, Mueller-Cohrs J, et al. Improved kinetics of rIX-FP, a recombinant fusion protein linking factor IX with albumin, in cynomolgus monkey and hemophilia B dogs. J Thromb Haemost. 2012;10:1591–9.
PubMed Central
CAS
PubMed
Article
Google Scholar
Osborn BL, Sekut L, Corcoran M, et al. Albutropin: a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur J Pharmacol. 2002;456:149–58.
CAS
PubMed
Article
Google Scholar
Subramanian GM, Fischella M, Lamouse-Smith A, et al. Albinterferon α-2b: a genetic fusion protein for the treatment of chronic hepatitis C. Nature Biotechnol. 2007;25:1411–9.
CAS
Article
Google Scholar
Nelson DR, Benhamou Y, Chuang W-L, et al. Albinterferon alfa-2b was not inferior to pegylated interferon-α in a randomized trial of patients with chronic hepatitis C virus genotype 2 or 3. Gastroenterol. 2010;139:1267–76.
CAS
Article
Google Scholar
Richards DA, Braiteh FS, Garcia AA, et al. A phase 1 study of MM-111, a bispecific HER2/HER3 antibody fusion protein, combined with multiple treatment regimens in patients with advanced HER-positive solid tumors. J Clin Oncol. 2014;32(15 Suppl):651.
Google Scholar
McDonagh C, Huhalov A, Harms BD, et al. Antitumor activity of a novel bispecific antibody that targets the ErbB2/ErbB3 oncogenic unit and inhabits hergulin-induced activation of ErbB3. Mol Cancer Ther. 2012;11:582–93.
CAS
PubMed
Article
Google Scholar
Andersen JT, Dalhus B, Viuff D, et al. Extending serum half-life of albumin by engineering neonatal Fc receptor (FcRn) binding. J Biol Chem. 2014;289:13492–502.
PubMed Central
CAS
PubMed
Article
Google Scholar
Wally J, Halbrooks PJ, Vonrhein C, et al. The crystal structure of iron-free serum transferrin provides insight into inter-lobe communication and receptor binding. J Biol Chem. 2006;281:24934–44.
PubMed Central
CAS
PubMed
Article
Google Scholar
Hsu VW, Bai M, Li J. Getting active: protein sorting in endocytic recycling. Nat Rev Mol Cell Biol. 2012;13:323–8.
CAS
PubMed
Article
Google Scholar
Prior CP. Modified transferrin fusion proteins. 2007; US patent 7,176,278 B2.
Bai Y, Ann DK, Shen W-C. Recombinant granulocyte colony-stimulating factor-transferrin fusion protein as an oral myelopoietic agent. Proc Natl Acad Sci USA. 2005;20:7292–6.
Article
CAS
Google Scholar
Matsubara M, Kanemoto S, Leshnower BG, et al. Single dose GLP-1-Tf ameliorates myocardial ischemia/reperfusion Injury. J Surg Res. 2009;165:38–45.
PubMed Central
PubMed
Article
CAS
Google Scholar
Wang Y, Chen Y-S, Zaro J, et al. Receptor-mediated activation of a proinsulin-transferrin fusion protein in hepatoma cells. J Control Release. 2011;155:386–92.
PubMed Central
CAS
PubMed
Article
Google Scholar
Matzuk MM, Hsueh AJ, Lapolt P, et al. The biological role of the carboxyl-terminal extension of human chorionic gonadotropin beta-subunit. Endocrinol. 1990;126:376–83.
CAS
Article
Google Scholar
Birken S, Canfield RE. Isolation and amino acid sequence of COOH-terminal fragments from the beta subunit of human choriogonadotropin. J Biol Chem. 1977;252:5386–92.
CAS
PubMed
Google Scholar
Fares F, Ganem S, Hajouj T, et al. Development of long-acting erythropoietin by fusing the carboxy-terminal peptide of human chorionic gonadotropin beta-subunit to the coding sequence of human erythropoietin. Endocrinology. 2007;148:5081–7.
CAS
PubMed
Article
Google Scholar
Klein J, Lobel L, Pollak S, et al. Pharmacokinetics and pharmacodynamics of single-chain recombinant human follicle-stimulating hormone containing the human chorionic gonadotropin carboxyterminal peptide in the rhesus monkey. Fertil Steril. 2002;77:1248–55.
PubMed
Article
Google Scholar
Croxtall JD, McKeage K. Corifollitropin alfa: a review of its use in controlled ovarian stimulation for assisted reproduction. Biodrugs. 2011;25:243–54.
CAS
PubMed
Article
Google Scholar
Fares F, Guy R, Bar-Ilan A, et al. Designing a long-acting human growth hormone (hGH) by fusing the carboxyl-terminal peptide of human chorionic gonadotropin (beta)-subunit to the coding sequence of hGH. Endocrinology. 2010;151:4410–7.
CAS
PubMed
Article
Google Scholar
Zadik Z, Rosenfeld R, Radziuk K, et al. Top line results of once-weekly, CTP-modifed human GH (MOD-4023): phase 2 dose finding study in children with GH deficiency. Horm Res Pediatr. 2014;82(Suppl. 1):63.
Webster R, Xie R, Didier E, et al. PEGylation of somatropin (recombinant human growth hormone): impact on its clearance in humans. Xenobiotica. 2008;38:1340–51.
CAS
PubMed
Article
Google Scholar
Tang Y-Y, Tang Z-H, Zhang Y, et al. The fusion protein of CTPHBcAg18-27-tapasin mediates the apoptosis of CD8+ T cells and CD8+ T cell response in HLA-A2 transgenic mice. Hepta Mon. 2014;14:e16161.
Google Scholar
Cleland JL, Geething NC, Moore JA, et al. A novel long-acting human growth hormone fusion protein, (VRS-317): enhanced in vivo potency and half-life. J Pharm Sci. 2012;101:2744–54.
PubMed Central
CAS
PubMed
Article
Google Scholar
Yuen KCJ, Conway GS, Popovic V, et al. A long-acting human growth hormone with delayed clearance (VRS-317): results of a double-blind, placebo-controlled, single ascending dose study in growth hormone-deficient adults. J Clin Endrocrin Metab. 2013;98:2595–603.
CAS
Article
Google Scholar
Kimchi-Sarfaty C, Schiller T, Hamasaki-Katagiri N, et al. Building better drugs: developing and regulating engineered therapeutic proteins. Trends Pharmacol Sci. 2013;34:534–48.
CAS
PubMed
Article
Google Scholar
Ago Y, Condro MC, Tan Y-V, et al. Reductions in synaptic proteins and selective alteration of prepulse inhibition in male C57BL/6 mice after postnatal administration of a VIP receptor (VIPR2) agonist. Psychopharmacol. 2015;232(12):2181–9.
CAS
Article
Google Scholar
Harari D, Kuhn N, Abramovich R, et al. Enhanced in vivo efficacy of a type I interferon superagonist with extended plasma half-life in a mouse model of multiple sclerosis. J Biol Chem. 2014;289:29014–29.
CAS
PubMed
Article
Google Scholar
Skerra A. Extending plasma half-life of biologicals. EuroBiotechNews. 2009;8:34–7.
Google Scholar
Schmidt SR. Fusion proteins: applications and challenges. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 19–59.
Chapter
Google Scholar
McPherson DT, Morrow C, Minehan DS, et al. Production and purification of a recombinant elastomeric polypeptide, G(VPGVG)19-VPGV, from Escherichia coli. Biotechnol Prog. 1992;8:347–52.
CAS
PubMed
Article
Google Scholar
Prior CP, Lai C-H, Sadeghi H et al. Modified transferrin fusion proteins. Patent WO 2004/020405. 2004.
Skerra A, Theobald I, Schlapsky M. Biological active proteins having increased in vivo and/or vitro stability. Patent WO 2008/155134 A1. 2008.
Orencia® (abatacept) prescribing information. Bristol-Meyers Squibb. 2015. http://packageinserts.bms.com/pi/pi_orencia.pdf. Accessed 7 Jun 2015.
Nulojix® (belatacept) prescribing information. Bristol-Myers Squibb. 2014. http://packageinserts.bms.com/pi/pi_nulojix.pdf. Accessed 7 Jun 2015.
Suzuki T, Ishii-Watabe A, Tada M, et al. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: a comparative study of the affinity of monoclonal antibodies and Fc-fusion proteins to human neonatal FcR. J Immunol. 2010;184:1968–76.
CAS
PubMed
Article
Google Scholar
Chen X, Zaro J, Shen A-C. Fusion protein linkers: effects on production, bioactivity, and pharmacokinetics. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 122–49.
Google Scholar
Peng Y, Deng L, Ding Y, et al. Comparative study of somatostatin-human serum albumin fusion proteins and natural somatostatin on receptor binding, internalization and activation. PLoS One. 2014; 9:e89932.
Zhao HL, Yao XQ, Xue C, et al. Increasing the homogeneity, stability and activity of human serum albumin and interferon-α2b protein by linke engineering. Prot Exp Purif. 2008;61:73–7.
CAS
Article
Google Scholar
Chen X, Zaro J, Shen W-C. Fusion protein linkers: property, design and functionality. Adv Drug Deliv Rev. 2013;65:1357–69.
PubMed Central
CAS
PubMed
Article
Google Scholar
Bai Y, Shen W-C. Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization. Pharm Res. 2006;23:2116–21.
CAS
PubMed
Article
Google Scholar
Ding Y, Peng Y, Deng L, et al. The effects of fusion structure on the expression and bioactivity of human brain natriurectic peptide (BNP) albumin fusion proteins. Curr Pharmaceut Biotechnol. 2014;15:856–63.
CAS
Article
Google Scholar
Holash J, Davis S, Papadopoulos N, et al. VEGF-trap: a VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA. 2002;99:11393–8.
PubMed Central
CAS
PubMed
Article
Google Scholar
Jawa V, Cousens L, De Groote AS. Immunogenicity of therapeutic fusion proteins: contributory factors and clinical experience. In: Schmidt S, editor. Fusion protein technologies for biopharmaceuticals: applications and challenges. Hoboken: Wiley; 2013. p. 150–75.
Google Scholar
Baldo BA. Chimeric fusion proteins used for therapy: indications, mechanisms, and safety. Drug Saf. 2015;38:455–79.
CAS
PubMed
Article
Google Scholar
Purcell RT, Lockey RF. Immunologic responses to therapeutic biologic agents. J Investig Allergol Clin Immunol. 2008;18:335–42.
CAS
PubMed
Google Scholar
Enbrel® (etanercept) prescribing information. Immunex Corporation (Amgen). 2013. http://pi.amgen.com/united_states/enbrel/derm/enbrel_pi.pdf. Accessed 7 Jun 2015.
Arcalyst® (rilonacept) prescribing information. Regeneron Pharmaceuticals. 2008. http://www.accessdata.fda.gov/drugsatfda_docs/label/2008/125249lbl.pdf. Accessed 7 Jun 2015.
Levin D, Golding B, Strome SE, et al. Fc fusion as a platform technology: potential for modulating immunogenicity. Trends Biotechnol. 2015;33:27–34.
CAS
PubMed
Article
Google Scholar
Mitoma H, Horiouchi T, Tsukamoto H, et al. Mechanisms for cytotoxic effects of anti-tumor necrosis factor agents on transmembrane tumor necrosis factor α-expressing cells: comparison among infliximab, etanercept, and adalimumab. Arthrit Rheumat. 2008;58:1248–57.
CAS
Article
Google Scholar
Davis PM, Abraham R, Xu L, et al. Abatacept binds to the Fc receptor CD64 but does not mediate complement-dependent cytotoxicity or antibody-dependent cellular cytotoxicity. J Rheumatol. 2007;34:2204–10.
CAS
PubMed
Google Scholar
Publishing La Merie. 2014 sales of recombinant therapeutic proteins and antibodies. Stuttgart: La Merie Publishing; 2015.
Google Scholar