Skip to main content
Log in

RNA Interference in the Treatment of Colon Cancer

  • Review Article
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Colorectal cancer is the third most common cancer in both men and women and has shown a progressive increase over the past 20 years. Current chemotherapy has major limitations, and a novel therapeutic approach is required. Given that neoplastic transformation of colon epithelial cells is a consequence of genetic and epigenetic alterations, RNA interference (RNAi) has been proposed as a new therapeutic strategy that offers important advantages over conventional treatments, with high specificity and potency and low toxicity. RNAi has been employed as an effective tool to study the function of genes, preventing their expression and leading to the development of new approaches to cancer treatment. In malignancies, including colon cancer, RNAi is being used for “silencing” genes that are deregulated by different processes such as gene amplification, mutation, or overexpression and may be the cause of oncogenesis. This strategy not only provides information on the involvement of certain genes in colon cancer, but also opens up a new perspective for its treatment. However, most studies have used adenovirus or lentivirus vectors to transport RNAi into tumor cells or tumors in animal models, because several technical obstacles must be overcome before RNAi can be used in the clinical setting. The aim of this study was to review current knowledge on the use of RNAi techniques in the treatment of colon cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Parkin DM, Steliarova-Foucher E. Estimates of cancer incidence and mortality in Europe in 2008. Eur J Cancer. 2010;46:765–81.

    Article  PubMed  CAS  Google Scholar 

  2. Strillacci A, Griffoni C, Lazzarini G, et al. Selective cyclooxygenase-2 silencing mediated by engineered E. coli and RNA interference induces anti-tumour effects in human colon cancer cells. Br J Cancer. 2010;103:975–86.

    Article  PubMed  CAS  Google Scholar 

  3. Yang J, Sun M, Zhang A, et al. Adenovirus-mediated siRNA targeting Bcl-xL inhibits proliferation, reduces invasion and enhances radiosensitivity of human colorectal cancer cells. World J Surg Oncol. 2011;9:117.

    Article  PubMed  Google Scholar 

  4. Tuschl T, Zamore PD, Lehmann R, et al. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 1999;13:3191–7.

    Article  PubMed  CAS  Google Scholar 

  5. Wang X, Chen Y, Ren J, et al. Small interfering RNA for effective cancer therapies. Mini Rev Med Chem. 2011;11:114–24.

    Article  PubMed  CAS  Google Scholar 

  6. Kurreck J. Antisense technologies, improvement through novel chemical modifications. Eur J Biochem. 2003;270:1628–44.

    Article  PubMed  CAS  Google Scholar 

  7. Zinkel S, Gross A, Yang E. BCL2 family in DNA damage and cell cycle control. Cell Death Differ. 2006;13:1351–9.

    Article  PubMed  CAS  Google Scholar 

  8. Nakamura K, Abu Lila AS, Matsunaga M, et al. A double-modulation strategy in cancer treatment with a chemotherapeutic agent and siRNA. Mol Ther. 2011;19:2040–7.

    Article  PubMed  CAS  Google Scholar 

  9. Charames GS, Bapat B. Cyclooxygenase-2 knockdown by RNA interference in colon cancer. Int J of Oncol. 2006;28:543–9.

    CAS  Google Scholar 

  10. Moreira L, Castells A. Cyclooxygenase as a target for colorectal cancer chemoprevention. Curr Drug Targets. 2011;12:1888–94.

    Article  PubMed  CAS  Google Scholar 

  11. Strillacci A, Griffoni C, Spisni E, et al. RNA interference as a key to knockdown overexpressed cyclooxygenase-2 gene in tumour cells. Br J Cancer. 2006;94:1300–10.

    Article  PubMed  CAS  Google Scholar 

  12. Strillacci A, Griffonia C, Sansoneb P, et al. MiR-101 downregulation is involved in cyclooxygenase-2 overexpression in human colon cancer cells. Exp Cell Res. 2009;315:1439–47.

    Article  PubMed  CAS  Google Scholar 

  13. Wu ZL, Song YQ, Shi YF, et al. High nuclear expression of STAT3 is associated with unfavorable prognosis in diffuse large B-cell lymphoma. J Hematol Oncol. 2011;4:31.

    Article  PubMed  CAS  Google Scholar 

  14. Zhang M, Zhou Y, Xie C, et al. STAT6 specific shRNA inhibits proliferation and induces apoptosis in colon cancer HT-29 cells. Cancer Lett. 2006;243:38–46.

    Article  PubMed  CAS  Google Scholar 

  15. Qian WF, Guan WX, Gao Y, et al. Inhibition of STAT3 by RNA interference suppresses angiogenesis in colorectal carcinoma. Braz J Med Biol Res. 2011;44:1222–30.

    Article  PubMed  CAS  Google Scholar 

  16. Lin L, Liu A, Peng Z, et al. STAT3 is necessary for proliferation and survival in colon cancer-initiating cells. Cancer Res. 2011;71:7226–37.

    Article  PubMed  CAS  Google Scholar 

  17. Takahashi Y, Nishioka K. Therapeutic approaches targeting tumor vasculature in gastrointestinal cancers. Front Biosci (Elite Ed). 2011;3:541–8.

    Article  Google Scholar 

  18. Mulkeen AL, Silva T, Yoo PS, et al. Short interfering RNA-mediated gene silencing of vascular endothelial growth factor: effects on cellular proliferation in colon cancer cells. Arch Surg. 2006;141:367–74.

    Article  PubMed  CAS  Google Scholar 

  19. Yin Y, Cao LY, Wu WQ, et al. Blocking effects of siRNA on VEGF expression in human colorectal cancer cells. World J Gastroenterol. 2010;16:1086–92.

    Article  PubMed  CAS  Google Scholar 

  20. Li TJ, Song JN, Kang K, et al. RNA interference-mediated gene silencing of vascular endothelial growth factor in colon cancer cells. World J Gastroenterol. 2007;13:5312–6.

    PubMed  CAS  Google Scholar 

  21. He XW, Yu X, Liu T, et al. Vector-based RNA interference against vascular endothelial growth factor-C inhibits tumor lymphangiogenesis and growth of colorectal cancer in vivo in mice. Chin Med J (Engl). 2008;121:439–44.

    CAS  Google Scholar 

  22. Liu YL, Yang YM, Xu H, et al. Increased expression of ubiquitin-specific protease 22 can promote cancer progression and predict therapy failure in human colorectal cancer. J Gastroenterol Hepatol. 2010;25:1800–5.

    Article  PubMed  Google Scholar 

  23. Kim WJ, Christensen LV, Jo S, et al. Cholesteryl oligoarginine delivering vascular endothelial growth factor siRNA effectively inhibits tumor growth in colon adenocarcinoma. Mol Ther. 2006;14:343–50.

    Article  PubMed  Google Scholar 

  24. Rush JS, Quaintly LM, Engelman L, et al. Endosomal accumulation of the activated epidermal growth factor receptor (EGFR) induces apoptosis. J Biol Chem. 2011;287:712–22.

    Article  PubMed  Google Scholar 

  25. Wu X, Deng Y, Wang G, et al. Combining siRNAs at two different sites in the EGFR to suppress its expression, induce apoptosis, and enhance 5-fluorouracil sensitivity of colon cancer cells. J Surg Res. 2007;138:56–63.

    Article  PubMed  CAS  Google Scholar 

  26. Rathinam R, Berrier A, Alahari SK. Role of Rho GTPases and their regulators in cancer progression. Front Biosci. 2011;16:2561–71.

    Article  PubMed  CAS  Google Scholar 

  27. Liu XP, Wang H, Yang K, et al. Inhibitory effects of adenovirus mediated tandem expression of RhoA and RhoC shRNAs in HCT116 cells. J Exp Clin Cancer Res. 2009;28:52.

    Article  PubMed  Google Scholar 

  28. Haibo W, Zhao G, Liu X, et al. Silencing of RhoA and RhoC expression by RNA interference suppresses human colorectal carcinoma growth in vivo. J Exp Clin Cancer Res. 2010;29:123.

    Article  Google Scholar 

  29. Jiang L, Lai YK, Zhang J, et al. Targeting S100P inhibits colon cancer growth and metastasis by Lentivirus-mediated RNA interference and proteomic analysis. Mol Med. 2011;17:709–16.

    Article  PubMed  CAS  Google Scholar 

  30. Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer. 2007;7:847–59.

    Article  PubMed  CAS  Google Scholar 

  31. Kaneda H, Arao T, Tanaka K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res. 2010;70:2053–63.

    Article  PubMed  CAS  Google Scholar 

  32. Szajda SD, Jankowska A, Zwierz K. Carbohydrate markers in colon carcinoma. Dis Markers. 2008;25:233–42.

    Article  PubMed  CAS  Google Scholar 

  33. Bu X, Li L, Li N, et al. Suppression of mucin 2 enhances the proliferation and invasion of LS174T human colorectal cancer cells. Cell Biol Int. 2011;35:1121–9.

    Article  PubMed  CAS  Google Scholar 

  34. Xiaoyuan C, Longbang C, Jinghua W, et al. Survivin: a potential prognostic marker and chemoradiotherapeutic target for colorectal cancer. Ir J Med Sci. 2010;179:327–35.

    Article  PubMed  CAS  Google Scholar 

  35. Pavlidou A, Dalamaga M, Kroupis C, et al. Survivin isoforms and clinicopathological characteristics in colorectal adenocarcinomas using real-time qPCR. World J Gastroenterol. 2011;17:1614–21.

    Article  PubMed  CAS  Google Scholar 

  36. Shen W, Wang CY, Wang XH, et al. Oncolytic adenovirus mediated survivin knockdown by RNA interference suppresses human colorectal carcinoma growth in vitro and in vivo. J Exp Clin Cancer Res. 2009;28:81.

    Article  PubMed  Google Scholar 

  37. Chu X, Chen L, Wang J, et al. SiRNA-mediated survivin inhibition enhances chemo- or radiosensitivity of colorectal cancer cells in tumor-bearing nude mice. Hepatogastroenterology. 2010;57:1445–52.

    PubMed  CAS  Google Scholar 

  38. Chu XY, Chen LB, Wang JH, et al. Overexpression of survivin is correlated with increased invasion and metastasis of colorectal cancer. J Surg Oncol. 2012;105:520–8.

    Article  PubMed  CAS  Google Scholar 

  39. Wang X, Fu Z, Zhao Y, et al. Profile of protein expression of the colon cancer cell line SW480 with survivin/shRNA. Eur J Cancer Prev. 2011;20:190–8.

    Article  PubMed  CAS  Google Scholar 

  40. Arjomandi M, Frelinger J, Donde A, et al. Secreted osteopontin is highly polymerized in human airways and fragmented in asthmatic airway secretions. PLoS One. 2011;6:e25678.

    Article  PubMed  CAS  Google Scholar 

  41. Wai PY, Mi Z, Guo H, et al. Osteopontin silencing by small interfering RNA suppresses in vitro and in vivo CT26 murine colon adenocarcinoma metastasis. Carcinogenesis. 2005;26:741–51.

    Article  PubMed  CAS  Google Scholar 

  42. Likui W, Hong W, Shuwen Z, et al. The potential of osteopontin as a therapeutic target for human colorectal cancer. J Gastrointest Surg. 2011;15:652–9.

    Article  PubMed  Google Scholar 

  43. Rubie C, Frick VO, Ghadjar P, et al. CXC receptor-4 mRNA silencing abrogates CXCL12-induced migration of colorectal cancer cells. J Transl Med. 2011;9:22.

    Article  PubMed  CAS  Google Scholar 

  44. Abedini F, Ismail M, Hosseinkhani H, et al. Effects of CXCR4 siRNA/dextran-spermine nanoparticles on CXCR4 expression and serum LDH levels in a mouse model of colorectal cancer metastasis to the liver. Cancer Manag Res. 2011;3:301–9.

    PubMed  CAS  Google Scholar 

  45. Chang LY, Lin YC, Mahalingam J, et al. Tumor-derived chemokine CCL5 enhances TGF-β-mediated killing of CD8(+) T cells in colon cancer by T-regulatory cells. Cancer Res. 2012;72:1092–102.

    Article  PubMed  CAS  Google Scholar 

  46. Chen L, Yuan D, Zhao R, et al. Suppression of TSPAN1 by RNA interference inhibits proliferation and invasion of colon cancer cells in vitro. Tumori. 2010;96:744–50.

    PubMed  CAS  Google Scholar 

  47. Lin F, Wang R, Shen JJ, et al. Knockdown of RCK/p54 expression by RNAi inhibits proliferation of human colorectal cancer cells in vitro and in vivo. Cancer Biol Ther. 2008;7:1669–76.

    PubMed  CAS  Google Scholar 

  48. Butcher NJ, Minchin RF. Arylamine N-acetyltransferase 1: a novel drug target in cancer development. Pharmacol Rev. 2012;64:147–65.

    Article  PubMed  CAS  Google Scholar 

  49. Fan Y, Zong WX. Hacking hexokinase halts tumor growth. Cancer Biol Ther. 2008;7:1136–8.

    Article  PubMed  CAS  Google Scholar 

  50. Tiang JM, Butcher NJ, Cullinane C, et al. RNAi-mediated knock-down of arylamine N-acetyltransferase-1 expression induces E-cadherin up-regulation and cell-cell contact growth inhibition. PLoS One. 2011;6:e17031.

    Article  PubMed  CAS  Google Scholar 

  51. Chen Z, Zhang H, Lu W, et al. Role of mitochondria-associated hexokinase II in cancer cell death induced by 3-bromopyruvate. Biochim Biophys Acta. 2009;1787:553–60.

    Article  PubMed  CAS  Google Scholar 

  52. Neary CL, Pastorino JG. Nucleocytoplasmic shuttling of hexokinase II in a cancer cell. Biochem Biophys Res Commun. 2010;394:1075–81.

    Article  PubMed  CAS  Google Scholar 

  53. Peng Q, Zhou Q, Zhou J. Stable RNA interference of hexokinase II gene inhibits human colon cancer LoVo cell growth in vitro and in vivo. Cancer Biol Ther. 2008;7:1128–35.

    Article  PubMed  CAS  Google Scholar 

  54. Peng Q, Zhou J, Zhou Q, et al. Silencing hexokinase II gene sensitizes human colon cancer cells to 5-fluorouracil. Hepatogastroenterology. 2009;56:355–60.

    PubMed  CAS  Google Scholar 

  55. Kleer CG, Cao Q, Varambally S, et al. EZH2 is a marker of aggressive breast cancer and promotes neoplastic transformation of breast epithelial cells. Proc Natl Acad Sci USA. 2003;100:11606–11.

    Article  PubMed  CAS  Google Scholar 

  56. Berezovska OP, Glinskii AB, Yang Z, et al. Essential role for activation of the Polycomb group (PcG) protein chromatin silencing pathway in metastatic prostate cancer. Cell Cycle. 2006;5:1886–901.

    Article  PubMed  CAS  Google Scholar 

  57. Tan J, Yang X, Zhuang L, et al. Pharmacologic disruption of Polycomb-repressive complex 2-mediated gene repression selectively induces apoptosis in cancer cells. Genes Dev. 2007;21:1050–63.

    Article  PubMed  CAS  Google Scholar 

  58. Holland D, Hoppe-Seyler K, Schuller B, et al. Activation of the enhancer of Zeste homologue 2 gene by the human papillomavirus E7 oncoprotein. Cancer Res. 2008;68:9964–72.

    Article  PubMed  CAS  Google Scholar 

  59. Fussbroich B, Wagener N, Macher-Goeppinger S, et al. EZH2 depletion blocks the proliferation of colon cancer cells. PLoS One. 2011;6:e21651.

    Article  PubMed  CAS  Google Scholar 

  60. Sureban SM, May R, George RJ, et al. Knockdown of RNA binding protein musashi-1 leads to tumor regression in vivo. Gastroenterology. 2008;134:1448–58.

    Article  PubMed  CAS  Google Scholar 

  61. Yokota N, Mainprize TG, Taylor MD, et al. Identification of differentially expressed and developmentally regulated genes in medulloblastoma using suppression subtraction hybridization. Oncogene. 2004;23:3444–53.

    Article  PubMed  CAS  Google Scholar 

  62. Kanemura Y, Mori K, Sakakibara S, et al. Musashi1, an evolutionarily conserved neural RNA-binding protein, is a versatile marker of human glioma cells in determining their cellular origin, malignancy, and proliferative activity. Differentiation. 2001;68:141–52.

    Article  PubMed  CAS  Google Scholar 

  63. Ma YH, Mentlein R, Knerlich F, et al. Expression of stem cell markers in human astrocytomas of different WHO grades. J Neurooncol. 2008;86:31–45.

    Article  PubMed  Google Scholar 

  64. Schulenburg A, Cech P, Herbacek I, et al. CD44-positive colorectal adenoma cells express the potential stem cell markers musashi antigen (msi1) and ephrin B2 receptor (EphB2). J Pathol. 2007;213:152–60.

    Article  PubMed  CAS  Google Scholar 

  65. Li D, Peng X, Yan D, et al. Msi-1 is a predictor of survival and a novel therapeutic target in colon cancer. Ann Surg Oncol. 2011;18:2074–83.

    Article  PubMed  Google Scholar 

  66. Hegedus Z, Czibula A, Kiss-Toth E. Tribbles: novel regulators of cell function; evolutionary aspects. Cell Mol Life Sci. 2006;63:1632–41.

    Article  PubMed  CAS  Google Scholar 

  67. Miyoshi N, Ishii H, Mimori K, et al. Abnormal expression of TRIB3 in colorectal cancer: a novel marker for prognosis. Br J Cancer. 2009;101:1664–70.

    Article  PubMed  CAS  Google Scholar 

  68. Brown CJ, Dastidar SG, Quah ST, et al. C-terminal substitution of MDM2 interacting peptides modulates binding affinity by distinctive mechanisms. PLoS One. 2011;6:e24122.

    Article  PubMed  CAS  Google Scholar 

  69. Yu Y, Sun P, Sun LC, et al. Downregulation of MDM2 expression by RNAi inhibits LoVo human colorectal adenocarcinoma cells growth and the treatment of LoVo cells with mdm2siRNA3 enhances the sensitivity to cisplatin. Biochem Biophys Res Commun. 2006;339:71–8.

    Article  PubMed  CAS  Google Scholar 

  70. Walker A, Acquaviva C, Matsusaka T, et al. UbcH10 has a rate-limiting role in G1 phase but might not act in the spindle checkpoint or as part of an autonomous oscillator. J Cell Sci. 2008;121:2319–26.

    Article  PubMed  CAS  Google Scholar 

  71. Chen SM, Jiang CY, Wu JY, et al. RNA interference-mediated silencing of UBCH10 gene inhibits colorectal cancer cell growth in vitro and in vivo. Clin Exp Pharmacol Physiol. 2010;37:525–9.

    Article  PubMed  CAS  Google Scholar 

  72. Atanassov BS, Dent SY. USP22 regulates cell proliferation by deubiquitinating the transcriptional regulator FBP1. EMBO Rep. 2011;12:924–30.

    Article  PubMed  CAS  Google Scholar 

  73. Liu Y, Yang Y, Xu H, et al. Implication of USP22 in the regulation of BMI-1, c-Myc, p16INK4a, p14ARF, and cyclin D2 expression in primary colorectal carcinomas. Diagn Mol Pathol. 2010;19:194–200.

    Article  PubMed  CAS  Google Scholar 

  74. Xu H, Liu YL, Yang YM, et al. Knock-down of ubiquitin-specific protease 22 by micro-RNA interference inhibits colorectal cancer growth. Int J Colorectal Dis. 2012;27:21–30.

    Article  PubMed  Google Scholar 

  75. Chen SH, Zhaori G. Potential clinical applications of siRNA technique: benefits and limitations. Eur J Clin Invest. 2011;41:221–32.

    Article  PubMed  CAS  Google Scholar 

  76. Davidson BL, McCray PB Jr. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12:329–40.

    Article  PubMed  CAS  Google Scholar 

  77. Goldstein MJ, Mitchell EP. Carcinoembryonic antigen in the staging and follow-up of patients with colorectal cancer. Cancer Invest. 2005;23:338–51.

    Article  PubMed  Google Scholar 

  78. Tanaka T, Kuroki M, Hamada H, et al. Cancer-targeting gene therapy using tropism-modified adenovirus. Anticancer Res. 2007;27:3679–84.

    PubMed  CAS  Google Scholar 

  79. Keates AC, Fruehauf JH, Xiang SO, et al. Cequent Pharmaceuticals, Inc.: the biological pitcher for RNAi therapeutics. Pharmacogenomics. 2007;8:867–71.

    Article  PubMed  CAS  Google Scholar 

  80. Miele E, Spinelli GP, Miele E, et al. Nanoparticle-based delivery of small interfering RNA: challenges for cancer therapy. Int J Nanomedicine. 2012;7:3637–57.

    PubMed  Google Scholar 

  81. Shahzad MM, Mangala LS, Han HD, et al. Targeted delivery of small interfering RNA using reconstituted high-density lipoprotein nanoparticles. Neoplasia. 2011;13:309–19.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Instituto de Salud Carlos III (FIS) through Project No. PI11/01862 and by the Consejería de Salud de la Junta de Andalucía through Project No. PI-0338.

Conflict of interest

The authors have no conflicts of interest that are directly relevant to the content of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Consolacion Melguizo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prados, J., Melguizo, C., Roldan, H. et al. RNA Interference in the Treatment of Colon Cancer. BioDrugs 27, 317–327 (2013). https://doi.org/10.1007/s40259-013-0019-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40259-013-0019-4

Keywords

Navigation