Skip to main content

Advertisement

Log in

The Use of Biologic Agents for the Treatment of Cutaneous Immune-Related Adverse Events from Immune Checkpoint Inhibitors: A Review of Reported Cases

  • Review Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Cutaneous immune-related adverse events encompass a spectrum of dermatological manifestations, including lichenoid reactions, psoriasiform eruptions, eczematous dermatitis, immunobullous disorders, granulomatous reactions, pruritus, vitiligo, and severe cutaneous adverse reactions such as Stevens–Johnson syndrome. The conventional approach to treating high-grade or refractory cutaneous immune-related adverse events has involved high-dose systemic corticosteroids. However, their use is limited owing to the potential disruption of antitumor responses and associated complications. To address this, corticosteroid-sparing targeted immunomodulators have been explored as therapeutic alternatives. Biologic agents, commonly employed for non-cutaneous immune-related adverse events such as colitis, are increasingly recognized for their efficacy in treating various patterns of cutaneous immune-related adverse events, including psoriasiform, immunobullous, and Stevens–Johnson syndrome-like reactions. This review consolidates findings from the English-language literature, highlighting the use of biologic agents in managing diverse cutaneous immune-related adverse event patterns, also encompassing maculopapular, eczematous, and lichenoid eruptions, pruritus, and transient acantholytic dermatosis (Grover disease). Despite the established efficacy of these agents, further research is necessary to explore their long-term effects on antitumor responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tattersall IW, Leventhal JS. Cutaneous toxicities of immune checkpoint inhibitors: the role of the dermatologist. Yale J Biol Med. 2020;93(1):123–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Lacouture M, Sibaud V. Toxic side effects of targeted therapies and immunotherapies affecting the skin, oral mucosa, hair, and nails. Am J Clin Dermatol. 2018;19(Suppl. 1):31–9. https://doi.org/10.1007/s40257-018-0384-3.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Geisler AN, Phillips GS, Barrios DM, et al. Immune checkpoint inhibitor-related dermatologic adverse events. J Am Acad Dermatol. 2020;83(5):1255–68. https://doi.org/10.1016/j.jaad.2020.03.132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fay CJ, Jakuboski S, McLellan B, et al. Diagnosis and management of dermatologic adverse events from systemic melanoma therapies. Am J Clin Dermatol. 2023;24(5):765–85. https://doi.org/10.1007/s40257-023-00790-8.

    Article  PubMed  Google Scholar 

  5. Apalla Z, Sibaud V. Immunotherapy-mediated dermatological adverse events: the urgent need for a common, clinically meaningful, management strategy. Support Care Cancer. 2020;28(12):5597–9. https://doi.org/10.1007/s00520-020-05701-9.

    Article  PubMed  Google Scholar 

  6. Ferreira MN, Ramseier JY, Leventhal JS. Dermatologic conditions in women receiving systemic cancer therapy. Int J Womens Dermatol. 2019;5(5):285–307. https://doi.org/10.1016/j.ijwd.2019.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Friedman CF, Proverbs-Singh TA, Postow MA. Treatment of the immune-related adverse effects of immune checkpoint inhibitors: a review. JAMA Oncol. 2016;2(10):1346–53. https://doi.org/10.1001/jamaoncol.2016.1051.

    Article  PubMed  Google Scholar 

  8. Phillips GS, Wu J, Hellmann MD, et al. Treatment outcomes of immune-related cutaneous adverse events. J Clin Oncol. 2019;37(30):2746–58. https://doi.org/10.1200/JCO.18.02141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Arbour KC, Mezquita L, Long N, et al. Impact of baseline steroids on efficacy of programmed cell death-1 and programmed death-ligand 1 blockade in patients with non-small-cell lung cancer. J Clin Oncol. 2018;36(28):2872–8. https://doi.org/10.1200/JCO.2018.79.0006.

    Article  CAS  PubMed  Google Scholar 

  10. Faje AT, Lawrence D, Flaherty K, et al. High-dose glucocorticoids for the treatment of ipilimumab-induced hypophysitis is associated with reduced survival in patients with melanoma. Cancer. 2018;124(18):3706–14. https://doi.org/10.1002/cncr.31629.

    Article  CAS  PubMed  Google Scholar 

  11. Montfort A, Filleron T, Virazels M, et al. Combining nivolumab and ipilimumab with infliximab or certolizumab in patients with advanced melanoma: first results of a phase Ib clinical trial. Clin Cancer Res. 2021;27(4):1037–47. https://doi.org/10.1158/1078-0432.CCR-20-3449.

    Article  CAS  PubMed  Google Scholar 

  12. Lesage C, Longvert C, Prey S, et al. Incidence and clinical impact of anti-TNFalpha treatment of severe immune checkpoint inhibitor-induced colitis in advanced melanoma: the Mecolit Survey. J Immunother. 2019;42(5):175–9. https://doi.org/10.1097/CJI.0000000000000268.

    Article  CAS  PubMed  Google Scholar 

  13. Badran YR, Cohen JV, Brastianos PK, Parikh AR, Hong TS, Dougan M. Concurrent therapy with immune checkpoint inhibitors and TNFalpha blockade in patients with gastrointestinal immune-related adverse events. J Immunother Cancer. 2019;7(1):226. https://doi.org/10.1186/s40425-019-0711-0.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Barrios DM, Phillips GS, Geisler AN, et al. IgE blockade with omalizumab reduces pruritus related to immune checkpoint inhibitors and anti-HER2 therapies. Ann Oncol. 2021;32(6):736–45. https://doi.org/10.1016/j.annonc.2021.02.016.

    Article  CAS  PubMed  Google Scholar 

  15. Apalla Z, Nikolaou V, Fattore D, et al. European recommendations for management of immune checkpoint inhibitors-derived dermatologic adverse events: the EADV Task Force “Dermatology for cancer patients” position statement. J Eur Acad Dermatol Venereol. 2022;36(3):332–50. https://doi.org/10.1111/jdv.17855.

    Article  CAS  PubMed  Google Scholar 

  16. Monsour EP, Pothen J, Balaraman R. A novel approach to the treatment of pembrolizumab-induced psoriasis exacerbation: a case report. Cureus. 2019;11(10): e5824. https://doi.org/10.7759/cureus.5824.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Johnson D, Patel AB, Uemura MI, et al. IL17A blockade successfully treated psoriasiform dermatologic toxicity from immunotherapy. Cancer Immunol Res. 2019;7(6):860–5. https://doi.org/10.1158/2326-6066.CIR-18-0682.

    Article  CAS  PubMed  Google Scholar 

  18. Lo JJ, Heberton MM, Pacha O, Huen AO, Patel AB. Biologic therapies for checkpoint inhibitor-induced cutaneous toxicities: a single-institution study of 17 consecutively treated patients. Support Care Cancer. 2022;30(2):989–94. https://doi.org/10.1007/s00520-021-06548-4.

    Article  PubMed  Google Scholar 

  19. Esfahani K, Miller WH Jr. Reversal of autoimmune toxicity and loss of tumor response by interleukin-17 blockade. N Engl J Med. 2017;376(20):1989–91. https://doi.org/10.1056/NEJMc1703047.

    Article  PubMed  Google Scholar 

  20. Kochi Y, Miyachi H, Tagashira R, et al. Simultaneous development of generalized pustular psoriasis and pemphigoid with multiple autoantibodies in a complete responder of pembrolizumab for lung cancer. J Dermatol. 2023. https://doi.org/10.1111/1346-8138.16832.

    Article  PubMed  Google Scholar 

  21. Hoa S, Laaouad L, Roberts J, et al. Preexisting autoimmune disease and immune-related adverse events associated with anti-PD-1 cancer immunotherapy: a national case series from the Canadian Research Group of Rheumatology in Immuno-Oncology. Cancer Immunol Immunother. 2021;70(8):2197–207. https://doi.org/10.1007/s00262-021-02851-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vinaixa Aranzazu A, Morillas-Lahuerta V, De Tord MB, Carrascosa Carrillo JM. Ixekizumab for the treatment of erythrodermic psoriasis triggered by durvalumab-tremelimumab in a cancer patient. Eur J Dermatol. 2021. https://doi.org/10.1684/ejd.2021.4087.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Gleason L, Hunter E, Cohen A, Suriano J, Nikbakht N. Atezolizumab-induced psoriasiform drug eruption successfully treated with ixekizumab: a case report and literature review. Dermatol Online J. 2023. https://doi.org/10.5070/D329160215.

    Article  PubMed  Google Scholar 

  24. Kost Y, Mattis D, Muskat A, Amin B, McLellan B. Immune checkpoint inhibitor-induced psoriasiform, spongiotic, and lichenoid dermatitis: a novel clinicopathological pattern. Cureus. 2022;14(8): e28010. https://doi.org/10.7759/cureus.28010.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Seervai RNH, Heberton M, Cho WC, et al. Severe de novo pustular psoriasiform immune-related adverse event associated with nivolumab treatment for metastatic esophageal adenocarcinoma. J Cutan Pathol. 2022;49(5):472–81. https://doi.org/10.1111/cup.14185.

    Article  PubMed  Google Scholar 

  26. Nikolaou V, Sibaud V, Fattore D, et al. Immune checkpoint-mediated psoriasis: a multicenter European study of 115 patients from the European Network for Cutaneous Adverse Event to Oncologic Drugs (ENCADO) Group. J Am Acad Dermatol. 2021;84(5):1310–20. https://doi.org/10.1016/j.jaad.2020.08.137.

    Article  CAS  PubMed  Google Scholar 

  27. Glinos GD, Fisher WS, Morr CS, Seminario-Vidal L. Nivolumab-induced psoriasis successfully treated with risankizumab-rzaa in a patient with stage III melanoma. JAAD Case Rep. 2021;11:74–7. https://doi.org/10.1016/j.jdcr.2021.03.029.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Gargiulo L, Ibba L, Valenti M, Costanzo A, Narcisi A. Pembrolizumab-induced plaque psoriasis successfully treated with risankizumab in a patient with stage IV cutaneous melanoma. Melanoma Res. 2023;33(2):152–4. https://doi.org/10.1097/CMR.000000000000087.

    Article  CAS  PubMed  Google Scholar 

  29. Mital R, Otto TS, Savu A, et al. Detection of novel therapies using a multi-national, multi-institutional registry of cutaneous immune-related adverse events and management. Int J Dermatol. 2023;62(8):1020–5. https://doi.org/10.1111/ijd.16714.

    Article  CAS  PubMed  Google Scholar 

  30. Hansen I, Heidrich I, Abeck F, et al. Successful treatment of PD-1 inhibitor-induced psoriasis with infliximab. J Eur Acad Dermatol Venereol. 2023;37(5):e621–3. https://doi.org/10.1111/jdv.18780.

    Article  CAS  PubMed  Google Scholar 

  31. Kim YE, Kim TM, Jo SJ. Histologically-diagnosed psoriasiform dermatitis induced by nivolumab successfully controlled by etanercept: a case report. J Dermatol. 2019;46(12):e464–6. https://doi.org/10.1111/1346-8138.15091.

    Article  PubMed  Google Scholar 

  32. Lopez AT, Khanna T, Antonov N, Audrey-Bayan C, Geskin L. A review of bullous pemphigoid associated with PD-1 and PD-L1 inhibitors. Int J Dermatol. 2018;57(6):664–9. https://doi.org/10.1111/ijd.13984.

    Article  CAS  PubMed  Google Scholar 

  33. Siegel J, Totonchy M, Damsky W, et al. Bullous disorders associated with anti-PD-1 and anti-PD-L1 therapy: a retrospective analysis evaluating the clinical and histopathologic features, frequency, and impact on cancer therapy. J Am Acad Dermatol. 2018;79(6):1081–8. https://doi.org/10.1016/j.jaad.2018.07.008.

    Article  CAS  PubMed  Google Scholar 

  34. Asdourian MS, Shah N, Jacoby TV, Reynolds KL, Chen ST. Association of bullous pemphigoid with immune checkpoint inhibitor therapy in patients with cancer: a systematic review. JAMA Dermatol. 2022;58(8):933–41. https://doi.org/10.1001/jamadermatol.2022.1624.

    Article  Google Scholar 

  35. Said JT, Talia J, Wei E, et al. Impact of biologic therapy on cancer outcomes in patients with immune checkpoint inhibitor-induced bullous pemphigoid. J Am Acad Dermatol. 2023;88(3):670–1. https://doi.org/10.1016/j.jaad.2022.06.1186.

    Article  CAS  PubMed  Google Scholar 

  36. Ridpath AV, Rzepka PV, Shearer SM, Scrape SR, Olencki TE, Kaffenberger BH. Novel use of combination therapeutic plasma exchange and rituximab in the treatment of nivolumab-induced bullous pemphigoid. Int J Dermatol. 2018;57(11):1372–4. https://doi.org/10.1111/ijd.13970.

    Article  PubMed  Google Scholar 

  37. Singer S, Nelson CA, Lian CG, Dewan AK, LeBoeuf NR. Nonbullous pemphigoid secondary to PD-1 inhibition. JAAD Case Rep. 2019;5(10):898–903. https://doi.org/10.1016/j.jdcr.2019.07.015.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sharma P, Barnes M, Nabeel S, LiPera W. Pembrolizumab-induced bullous pemphigoid treated with rituximab. JCO Oncol Pract. 2020;16(11):764–6. https://doi.org/10.1200/JOP.19.00751.

    Article  PubMed  Google Scholar 

  39. Virgen CA, Nguyen TA, Di Raimondo C, et al. Bullous pemphigoid associated with cemiplimab therapy in a patient with locally advanced cutaneous squamous cell carcinoma. JAAD Case Rep. 2020;6(3):195–7. https://doi.org/10.1016/j.jdcr.2020.01.008.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Povilaityte E, Gellrich FF, Beissert S, Abraham S, Meier F, Gunther C. Treatment-resistant bullous pemphigoid developing during therapy with immune checkpoint inhibitors. J Eur Acad Dermatol Venereol. 2021;35(9):e591–3. https://doi.org/10.1111/jdv.17321.

    Article  CAS  PubMed  Google Scholar 

  41. Sowerby L, Dewan AK, Granter S, Gandhi L, LeBoeuf NR. Rituximab treatment of nivolumab-induced bullous pemphigoid. JAMA Dermatol. 2017;153(6):603–5. https://doi.org/10.1001/jamadermatol.2017.0091.

    Article  PubMed  Google Scholar 

  42. Grimaux X, Delva R, Jadaud E, Croue A. Nivolumab-induced bullous pemphigoid after radiotherapy and abscopal effect. Australas J Dermatol. 2019;60(3):e235–6. https://doi.org/10.1111/ajd.12987.

    Article  PubMed  Google Scholar 

  43. Kaul S, Wang A, Grushchak S, Albrecht J. Pembrolizumab-induced reactivation of bullous pemphigoid. Int J Dermatol. 2021;60(6):757–8. https://doi.org/10.1111/ijd.15366.

    Article  CAS  PubMed  Google Scholar 

  44. Morris LM, Lewis HA, Cornelius LA, Chen DY, Rosman IS. Neutrophil-predominant bullous pemphigoid induced by checkpoint inhibitors: a case series. J Cutan Pathol. 2020;47(8):742–6. https://doi.org/10.1111/cup.13687.

    Article  PubMed  Google Scholar 

  45. Wesolow JT, Jalali S, Clark LD. A rare case of bullous pemphigoid secondary to checkpoint inhibitor immunotherapy: a tense situation. Cureus. 2021;13(7): e16169. https://doi.org/10.7759/cureus.16169.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sadik CD, Langan EA, Gutzmer R, et al. Retrospective analysis of checkpoint inhibitor therapy-associated cases of bullous pemphigoid from six German dermatology centers. Front Immunol. 2020;11: 588582. https://doi.org/10.3389/fimmu.2020.588582.

    Article  CAS  PubMed  Google Scholar 

  47. Schauer F, Rafei-Shamsabadi D, Mai S, et al. Hemidesmosomal reactivity and treatment recommendations in immune checkpoint inhibitor-induced bullous pemphigoid: a retrospective, monocentric study. Front Immunol. 2022;13: 953546. https://doi.org/10.3389/fimmu.2022.953546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Brown AM, Masterson W, Lo J, Patel AB. Systemic treatment of cutaneous adverse events after immune checkpoint inhibitor therapy: a review. Dermatitis. 2021. https://doi.org/10.1097/DER.0000000000000776.

    Article  Google Scholar 

  49. Yun JSW, Chan OB, Goh M, McCormack CJ. Bullous pemphigoid associated with anti-programmed cell death protein 1 and anti-programmed cell death ligand 1 therapy: a case series of 13 patients. Australas J Dermatol. 2023;64(1):131–7. https://doi.org/10.1111/ajd.13960.

    Article  PubMed  Google Scholar 

  50. Damsky W, Kole L, Tomayko MM. Development of bullous pemphigoid during nivolumab therapy. JAAD Case Rep. 2016;2(6):442–4. https://doi.org/10.1016/j.jdcr.2016.05.009.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Choi SH, Chung KB, Kim DY. Inhibition of transforming growth factor beta and immune checkpoints induces a distinctively distributed, severe bullous pemphigoid. Acta Derm Venereol. 2021;101(6): adv00489. https://doi.org/10.2340/00015555-3853.

    Article  CAS  PubMed  Google Scholar 

  52. Klepper EM, Robinson HN. Dupilumab for the treatment of nivolumab-induced bullous pemphigoid: a case report and review of the literature. Dermatol Online J. 2021;27(9). doi: https://doi.org/10.5070/D327955136.

  53. Bruni M, Moar A, Schena D, Girolomoni G. A case of nivolumab-induced bullous pemphigoid successfully treated with dupilumab. Dermatol Online J. 2022. https://doi.org/10.5070/D328257396.

    Article  PubMed  Google Scholar 

  54. Pop SR, Strock D, Smith RJ. Dupilumab for the treatment of pembrolizumab-induced bullous pemphigoid: a case report. Dermatol Ther. 2022;35(8): e15623. https://doi.org/10.1111/dth.15623.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Khazaeli M, Grover R, Pei S. Concomitant nivolumab-associated Grover disease and bullous pemphigoid in a patient with metastatic renal cell carcinoma. J Cutan Pathol. 2023;50(6):520–3. https://doi.org/10.1111/cup.14383.

    Article  PubMed  Google Scholar 

  56. Shipman WD, Singh K, Cohen JM, Leventhal JS, Damsky WD, Tomayko MM. Immune checkpoint inhibitor-induced bullous pemphigoid skin has elevated interleukin-4 and interleukin-13 expression and responds to IL-4R inhibitionImmune checkpoint inhibitor-induced bullous pemphigoid skin has elevated interleukin-4 and interleukin-13 expression and responds to IL-4R inhibition. J Invest Dermatol. 2022;142(8):S5.

    Article  Google Scholar 

  57. Mihailescu ML, Brockstein BE, Desai N, Waldinger J. Successful reintroduction and continuation of nivolumab in a patient with immune checkpoint inhibitor-induced bullous pemphigoid. CPC Case Rep. 2020;2:100031. https://doi.org/10.1016/j.cpccr.2020.100031.

  58. Cardona AF, Ruiz-Patino A, Zatarain-Barron ZL, et al. Refractory bullous pemphigoid in a patient with metastatic lung adenocarcinoma treated with pembrolizumab. Case Rep Oncol. 2021;14(1):386–90. https://doi.org/10.1159/000514144.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Molina GE, Yu Z, Foreman RK, Reynolds KL, Chen ST. Generalized bullous mucocutaneous eruption mimicking Stevens-Johnson syndrome in the setting of immune checkpoint inhibition: a multicenter case series. J Am Acad Dermatol. 2020;83(5):1475–7. https://doi.org/10.1016/j.jaad.2020.03.029.

    Article  PubMed  Google Scholar 

  60. Cai ZR, Lecours J, Adam JP, et al. Toxic epidermal necrolysis associated with pembrolizumab. J Oncol Pharm Pract. 2020;26(5):1259–65. https://doi.org/10.1177/1078155219890659.

    Article  CAS  PubMed  Google Scholar 

  61. Coleman E, Ko C, Dai F, Tomayko MM, Kluger H, Leventhal JS. Inflammatory eruptions associated with immune checkpoint inhibitor therapy: a single-institution retrospective analysis with stratification of reactions by toxicity and implications for management. J Am Acad Dermatol. 2019;80(4):990–7. https://doi.org/10.1016/j.jaad.2018.10.062.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Wu Z. Adalimumab for sintilimab-induced toxic epidermal necrolysis in a patient with metastatic gastric malignancy: a case report and literature review. Clin Cosmet Investig Dermatol. 2023;16:457–61. https://doi.org/10.2147/CCID.S401286.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Chen PY, Li ZY, Cai SQ. Case report: cadonilimab-related toxic epidermal necrolysis-like reactions successfully treated with supplemental adalimumab. Front Immunol. 2023;14:1188523. https://doi.org/10.3389/fimmu.2023.1188523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Meledathu S, Gordon M, Thornton M, Ashinoff R. Management of Stevens-Johnson syndrome/toxic epidermal necrolysis: a case report and literature review. J Drugs Dermatol. 2023;22(11):e24–8. https://doi.org/10.36849/JDD.6999.

    Article  PubMed  Google Scholar 

  65. Kian W, Zemel M, Elobra F, et al. Intravenous immunoglobulin efficacy on pembrolizumab induced severe toxic epidermal necrolysis. Anticancer Drugs. 2022;33(1):e738–40. https://doi.org/10.1097/CAD.0000000000001162.

    Article  CAS  PubMed  Google Scholar 

  66. Sandhu M, Kc B, Bhandari J, Gambhir HS, Farah R. Pembrolizumab-associated Stevens-Johnson syndrome in a patient with metastatic non-small cell lung cancer: a case report. Cureus. 2023;15(7): e41439. https://doi.org/10.7759/cureus.41439.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Borg L, Buhagiar M, La Ferla E, Pisani D, Said J, Boffa MJ. Pembrolizumab-induced toxic epidermal necrolysis. Case Rep Oncol. 2022;15(3):887–93. https://doi.org/10.1159/000526931.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Ingen-Housz-Oro S, Milpied B, Badrignans M, et al. Severe blistering eruptions induced by immune checkpoint inhibitors: a multicentre international study of 32 cases. Melanoma Res. 2022;32(3):205–10. https://doi.org/10.1097/CMR.0000000000000819.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Yang Y, Li J, Till BG, et al. Toxic epidermal necrolysis-like reaction following combination therapy with camrelizumab and apatinib for advanced gallbladder carcinoma. Front Oncol 2021;11:728523. https://doi.org/10.3389/fonc.2021.728523.

  70. Nayar N, Briscoe K, Fernandez PP. Toxic epidermal necrolysis-like reaction with severe satellite cell necrosis associated with nivolumab in a patient with opilimumab refractory metastatic melanoma. J Immunother. 2016;39(3):149–52. https://doi.org/10.1097/CJI.0000000000000112.

    Article  PubMed  Google Scholar 

  71. Vivar KL, Deschaine M, Messina J, et al. Epidermal programmed cell death-ligand 1 expression in TEN associated with nivolumab therapy. J Cutan Pathol. 2017;44(4):381–4. https://doi.org/10.1111/cup.12876.

    Article  PubMed  Google Scholar 

  72. Ahmad M, Murphy MJ, Damsky W, Leventhal J. Dupilumab-induced psoriasis in the setting of pembrolizumab therapy: an analysis of cytokine expression. Int J Dermatol. 2022;62(8):e42–6. https://doi.org/10.1111/ijd.16538.

    Article  CAS  Google Scholar 

  73. Kuo AM, Gu S, Stoll J, et al. Management of immune-related cutaneous adverse events with dupilumab. J Immunother Cancer. 2023;11(6): e007324. https://doi.org/10.1136/jitc-2023-007324.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Hibler BP, Markova A. Treatment of severe cutaneous adverse reaction with tocilizumab. Br J Dermatol. 2020;183(4):785–7. https://doi.org/10.1111/bjd.19129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Park JJ, Park E, Damsky WE, Vesely MD. Pembrolizumab-induced lichenoid dermatitis treated with dupilumab. JAAD Case Rep. 2023;37:13–5. https://doi.org/10.1016/j.jdcr.2023.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Alamon-Reig F, Bosch-Amate X, Giavedoni P, et al. Use of omalizumab is associated with improvement of pruritic skin disorders induced by immune checkpoint inhibitors: a retrospective cohort from the European Task Force of Dermatology for Cancer patients. J Am Acad Dermatol. 2024;90(2):429–32. https://doi.org/10.1016/j.jaad.2023.10.012.

    Article  CAS  PubMed  Google Scholar 

  77. Blaise M, Cardot-Leccia N, Seitz-Polski B, et al. Tocilizumab for corticosteroid-refractory immune checkpoint inhibitor-induced generalized morphea. JAMA Dermatol. 2023;159(1):112–4. https://doi.org/10.1001/jamadermatol.2022.5146].

    Article  PubMed  Google Scholar 

  78. Herrscher H, Tomasic G, Castro GA. Generalised morphea induced by pembrolizumab. Eur J Cancer. 2019;116:178–81. https://doi.org/10.1016/j.ejca.2019.05.018.

    Article  PubMed  Google Scholar 

  79. DeMaio A, Hashemi KB, Avery A, Metcalf JS, Winterfield LS. A case of nivolumab-induced scleroderma-like syndrome successfully treated with intravenous immunoglobulin. JAAD Case Rep. 2023;31:76–9. https://doi.org/10.1016/j.jdcr.2022.06.007.

    Article  PubMed  Google Scholar 

  80. Barbosa NS, Wetter DA, Wieland CN, Shenoy NK, Markovic SN, Thanarajasingam U. Scleroderma induced by pembrolizumab: a case series. Mayo Clin Proc. 2017;92(7):1158–63. https://doi.org/10.1016/j.mayocp.2017.03.016.

    Article  PubMed  Google Scholar 

  81. Shelton E, Doolittle C, Shinohara MM, Thompson JA, Moshiri AS. Can’t handle the itch? Refractory immunotherapy-related transient acantholytic dermatosis: prompt resolution with dupilumab. JAAD Case Rep. 2022;22:31–3. https://doi.org/10.1016/j.jdcr.2022.01.029.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Panou E, Stavridi F, Nikolaou C, Stratigos A, Nikolaou V. Dupilumab for the treatment of immune checkpoint blockers’ induced pruritus. J Eur Acad Dermatol Venereol. 2023;37(12):e1475–6. https://doi.org/10.1111/jdv.19369.

    Article  CAS  PubMed  Google Scholar 

  83. Utsunomiya A, Oyama N, Iino S, et al. A case of erythema multiforme major developed after sequential use of two immune checkpoint inhibitors, nivolumab and ipilimumab, for advanced melanoma: possible implication of synergistic and/or complementary immunomodulatory effects. Case Rep Dermatol. 2018;10(1):1–6. https://doi.org/10.1159/000485910.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Belzer A, Pach JJ, Valido K, Leventhal JS. The impact of dermatologic adverse events on the quality of life of oncology patients: a review of the literature. Am J Clin Dermatol. 2024. https://doi.org/10.1007/s40257-024-00847-2.

    Article  PubMed  Google Scholar 

  85. Schulz TU, Zierold S, Sachse MM, et al. Persistent immune-related adverse events after cessation of checkpoint inhibitor therapy: prevalence and impact on patients’ health-related quality of life. Eur J Cancer. 2022;176:88–99. https://doi.org/10.1016/j.ejca.2022.08.029.

    Article  CAS  PubMed  Google Scholar 

  86. Vigarios E, Epstein JB, Sibaud V. Oral mucosal changes induced by anticancer targeted therapies and immune checkpoint inhibitors. Support Care Cancer. 2017;25(5):1713–39. https://doi.org/10.1007/s00520-017-3629-4.

    Article  PubMed  Google Scholar 

  87. Phillips GS, Freites-Martinez A, Wu J, et al. Clinical characterization of immunotherapy-related pruritus among patients seen in 2 oncodermatology clinics. JAMA Dermatol. 2019;155(2):249–51. https://doi.org/10.1001/jamadermatol.2018.4560.

    Article  PubMed  Google Scholar 

  88. Kamata M, Tada Y. Safety of biologics in psoriasis. J Dermatol. 2018;45(3):279–86. https://doi.org/10.1111/1346-8138.14096.

    Article  PubMed  Google Scholar 

  89. Kamata M, Tada Y. Efficacy and safety of biologics for psoriasis and psoriatic arthritis and their impact on comorbidities: a literature review. Int J Mol Sci. 2020;21(5):1690. https://doi.org/10.3390/ijms21051690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Davis JS, Ferreira D, Paige E, Gedye C, Boyle M. Infectious complications of biological and small molecule targeted immunomodulatory therapies. Clin Microbiol Rev. 2020;33(3):e00035-e119. https://doi.org/10.1128/CMR.00035-19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kang JH, Bluestone JA, Young A. Predicting and preventing immune checkpoint inhibitor toxicity: targeting cytokines. Trends Immunol. 2021;42(4):293–311. https://doi.org/10.1016/j.it.2021.02.006.

    Article  CAS  PubMed  Google Scholar 

  92. Shipman WD, Singh K, Cohen JM, Leventhal J, Damsky W, Tomayko MM. Immune checkpoint inhibitor-induced bullous pemphigoid is characterized by interleukin (IL)-4 and IL-13 expression and responds to dupilumab treatment. Br J Dermatol. 2023;189(3):339–41. https://doi.org/10.1093/bjd/ljad149.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shi J, Song X, Traub B, Luxenhofer M, Kornmann M. Involvement of IL-4, IL-13 and their receptors in pancreatic cancer. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22062998.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Verheijden RJ, May AM, Blank CU, et al. Association of anti-TNF with decreased survival in steroid refractory ipilimumab and anti-PD1-treated patients in the Dutch Melanoma Treatment Registry. Clin Cancer Res. 2020;26(9):2268–74. https://doi.org/10.1158/1078-0432.CCR-19-3322.

    Article  CAS  PubMed  Google Scholar 

  95. Fattore D, Annunziata MC, Panariello L, Marasca C, Fabbrocini G. Successful treatment of psoriasis induced by immune checkpoint inhibitors with apremilast. Eur J Cancer. 2019;110:107–9. https://doi.org/10.1016/j.ejca.2019.01.010.

    Article  CAS  PubMed  Google Scholar 

  96. Apalla Z, Psarakis E, Lallas A, Koukouthaki A, Fassas A, Smaragdi M. Psoriasis in patients with active lung cancer: is apremilast a safe option? Dermatol Pract Concept. 2019;9(4):300–1. https://doi.org/10.5826/dpc.0904a11.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gresham LM, Kirchhof MG. A case of drug-induced bullous pemphigoid secondary to immunotherapy treated with upadacitinib: a case report. SAGE Open Med Case Rep. 2023. https://doi.org/10.1177/2050313X231160926.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan S. Leventhal.

Ethics declarations

Funding

No external funding was used in the preparation of this article.

Conflict of interest

Jolanta Pach, Kailyn Valido, Annika Belzer, and Jonathan S. Leventhal have no conflicts of interest that are directly relevant to the content of this article. Jonathan S. Leventhal serves on the advisory boards of La Roche-Posay and Sanofi and Regeneron Pharmaceuticals and receives clinical trial funding from Azitra, Inc. and OnQuality.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Availability of data and material

No datasets were generated or analyzed during the current study.

Code availability

Not applicable.

Author contributions

All authors contributed to the study conception and design. Material preparation and the literature review were performed by JP, KV, and AB. The first draft of the manuscript was written by JP, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pach, J., Valido, K., Belzer, A. et al. The Use of Biologic Agents for the Treatment of Cutaneous Immune-Related Adverse Events from Immune Checkpoint Inhibitors: A Review of Reported Cases. Am J Clin Dermatol (2024). https://doi.org/10.1007/s40257-024-00866-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40257-024-00866-z

Navigation