Skip to main content

Advertisement

Log in

Novel Therapies for Pemphigus Vulgaris

  • Leading Article
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

Pemphigus vulgaris (PV) is a severe chronic autoimmune blistering disease that affects the skin and mucous membranes. It is characterized by suprabasal acantholysis due to disruption of desmosomal connections between keratinocytes. Autoantibodies against desmosomal cadherins, desmoglein 3 and 1, have been shown to induce disease. Certain human leukocyte antigen (HLA) types and non-HLA foci confer genetic susceptibility. Until the discovery of corticosteroids in the 1950s, PV was 75% fatal. Since then, multiple PV treatments, such as systemic corticosteroids and adjunctive therapy with immunosuppressive medications (mycophenolate mofetil, azathioprine, cyclophosphamide, cyclosporine, methotrexate, gold, and others) have been introduced; however, none have led to long-term remissions and many have undesired adverse effects. Our growing understanding of the pathophysiologic mechanisms in PV is leading to development of new targeted therapies, such as intravenous immunoglobulin, anti-CD20 monoclonal antibodies, inhibitors of Bruton tyrosine kinase and neonatal Fc receptors, and adoptive cellular transfer, that may result in lasting control of this life-threatening disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmed AR, Moy R. Death in pemphigus. J Am Acad Dermatol. 1982;7(2):221–8.

    Article  CAS  PubMed  Google Scholar 

  2. Hertl M, Jedlickova H, Karpati S, Marinovic B, Uzun S, Yayli S, Mimouni D, Borradori L, Feliciani C, Ioannides D, Joly P, Kowalewski C, Zambruno G, Zillikens D, Jonkman MF. Pemphigus. S2 Guideline for diagnosis and treatment-guided by the European Dermatology Forum (EDF) in cooperation with the European Academy of Dermatology and Venereology (EADV). J Eur Acad Dermatol Venereol. 2015;29(3):405–414. https://doi.org/10.1111/jdv.12772

  3. Yan L, Wang JM, Zeng K. Association between HLA-DRB1 polymorphisms and pemphigus vulgaris: a meta-analysis. Br J Dermatol. 2012;167(4):768–77. https://doi.org/10.1111/j.1365-2133.2012.11040.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eming R, Hennerici T, Backlund J, Feliciani C, Visconti KC, Willenborg S, Wohde J, Holmdahl R, Sonderstrup G, Hertl M. Pathogenic IgG antibodies against desmoglein 3 in pemphigus vulgaris are regulated by HLA-DRB1*04:02-restricted T cells. J Immunol. 2014;193(9):4391–9. https://doi.org/10.4049/jimmunol.1401081.

    Article  CAS  PubMed  Google Scholar 

  5. Sarig O, Bercovici S, Zoller L, Goldberg I, Indelman M, Nahum S, Israeli S, Sagiv N, Martinez de Morentin H, Katz O, Baum S, Barzilai A, Trau H, Murrell DF, Bergman R, Hertl M, Rosenberg S, Nöthen MM, Skorecki K, Schmidt E, Zillikens D, Darvasi A, Geiger D, Rosset S, Ibrahim SM, Sprecher E. Population-specific association between a polymorphic variant in ST18, encoding a pro-apoptotic molecule, and pemphigus vulgaris. J Invest Dermatol. 2012;132(7):1798–805. https://doi.org/10.1038/jid.2012.46.

    Article  CAS  PubMed  Google Scholar 

  6. Vodo D, Sarig O, Geller S, Ben-Asher E, Olender T, Bochner R, Goldberg I, Nosgorodsky J, Alkelai A, Tatarskyy P, Peled A, Baum S, Barzilai A, Ibrahim SM, Zillikens D, Lancet D, Sprecher E. Identification of a functional risk variant for pemphigus vulgaris in the ST18 gene. PLoS Genet. 2016;12(5):e1006008. https://doi.org/10.1371/journal.pgen.1006008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Radeva MY, Walter E, Stach RA, Yazdi AS, Schlegel N, Sarig O, Sprecher E, Waschke J. ST18 enhances PV-IgG-induced loss of keratinocyte cohesion in parallel to increased ERK activation. Front Immunol. 2019; 10 (770). https://doi.org/10.3389/fimmu.2019.00770

  8. Naseer S, Gill L, Shah J, Sinha AA. Gender-based variability in disease presentation in pemphigus vulgaris. J Drugs Dermatol. 2014;13(10):1225–300.

    PubMed  Google Scholar 

  9. Qian Y, Diaz LA, Ye J, Clarke SH. Dissecting the anti-desmoglein autoreactive B cell repertoire in pemphigus vulgaris patients. J Immunol. 2007;178(9):5982–90.

    Article  CAS  PubMed  Google Scholar 

  10. Veldman CM, Gebhard KL, Uter W, Wassmuth R, Grotzinger J, Schultz E, Hertl M. T cell recognition of desmoglein 3 peptides in patients with pemphigus vulgaris and healthy individuals. J Immunol. 2004;172(6):3883–922.

    Article  CAS  PubMed  Google Scholar 

  11. Veldman C, Hohne A, Dieckmann D, Schuler G, Hertl M. Type I regulatory T cells specific for desmoglein 3 are more frequently detected in healthy individuals than in patients with pemphigus vulgaris. J Immunol. 2004;172(10):6468–75.

    Article  CAS  PubMed  Google Scholar 

  12. Ellenbrecht CT, Payne AS. Setting the target for pemphigus vulgaris therapy. JCI Insight. 2017;2(5):e92021. https://doi.org/10.1172/jci.insight.92021.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Zhu HQ, Xu RC, Chen YY, Yuan HJ, Cao H, Zhao XQ, Zheng J, Wang Y, Pan M. Impaired function of CD19(+) CD24(hi) CD38(hi) regulatory B cells in patients with pemphigus. Br J Dermatol. 2015;172(1):101–10. https://doi.org/10.1111/bjd.13192.

    Article  CAS  PubMed  Google Scholar 

  14. Spindler V, Heupel WM, Efthymiadis A, Schmidt E, Eming R, Rankl C, Hinterdorfer P, Muller T, Drenckhahn D, Waschke J. Desmocollin 3-mediated binding is crucial for keratinocyte cohesion and is impaired in pemphigus. J Biol Chem. 2009;284(44):30556–64. https://doi.org/10.1074/jbc.M109.024810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Schulze K, Galichet A, Sayar BS, Scothern A, Howald D, Zymann H, Siffert M, Zenhausern D, Bolli R, Koch PJ, Garrod D, Suter MM, Muller EJ. An adult passive transfer mouse model to study desmoglein 3 signaling in pemphigus vulgaris. J Invest Dermatol. 2012;132(2):346–55. https://doi.org/10.1038/jid.2011.299.

    Article  CAS  PubMed  Google Scholar 

  16. Mascaro JM Jr, Espana A, Liu Z, Ding X, Swartz SJ, Fairley JA, Diaz LA. Mechanisms of acantholysis in pemphigus vulgaris: role of IgG valence. Clin Immunol Immunopathol. 1997;85(1):90–6.

    Article  PubMed  Google Scholar 

  17. Payne AS, Ishii K, Kacir S, Lin C, Li H, Hanakawa Y, Tsunoda K, Amagai M, Stanley JR, Siegel DL. Genetic and functional characterization of human pemphigus vulgaris monoclonal autoantibodies isolated by phage display. J Clin Invest. 2005;115(4):888–99. https://doi.org/10.1172/jci24185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pelanda R, Torres RM. Central B-cell tolerance: where selection begins. Cold Spring Harb Perspect Biol. 2012;4(4):a007146. https://doi.org/10.1101/cshperspect.a007146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yurasov S, Nussenzweig MC. Regulation of autoreactive antibodies. Curr Opin Rheumatol. 2007;19(5):421–6. https://doi.org/10.1097/BOR.0b013e328277ef3b.

    Article  CAS  PubMed  Google Scholar 

  20. Ludwig RJ, Vanhoorelbeke K, Leypoldt F, Kaya Z, Bieber K, McLachlan SM, Komorowski L, Luo J, Cabral-Marques O, Hammers CM, Lindstrom JM, Lamprecht P, Fischer A, Riemekasten G, Tersteeg C, Sondermann P, Rapoport B, Wandinger K-P, Probst C, El Beidaq A, Schmidt E, Verkman A, Manz RA, Nimmerjahn F. Mechanisms of autoantibody-induced pathology. Front Immunol. 2017; 8(603). https://doi.org/10.3389/fimmu.2017.00603

  21. Spindler V, Waschke J (2018) Pemphigus—a disease of desmosome dysfunction caused by multiple mechanisms. Front Immunol 9(136). https://doi.org/10.3389/fimmu.2018.00136

  22. Bystryn J-C, Steinman NM. The adjuvant therapy of pemphigus: an update. Arch Dermatol. 1996;132(2):203–12. https://doi.org/10.1001/archderm.1996.03890260105016.

    Article  CAS  PubMed  Google Scholar 

  23. Carson PJ, Hameed A, Ahmed AR. Influence of treatment on the clinical course of pemphigus vulgaris. J Am Acad Dermatol. 1996;34(4):645–52.

    Article  CAS  PubMed  Google Scholar 

  24. Liu D, Ahmet A, Ward L, Krishnamoorthy P, Mandelcorn ED, Leigh R, Brown JP, Cohen A, Kim H. A practical guide to the monitoring and management of the complications of systemic corticosteroid therapy. Allergy Asthma Clin Immunol. 2013;9(1):30. https://doi.org/10.1186/1710-1492-9-30.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Walsh LJ, Wong CA, Oborne J, Cooper S, Lewis SA, Pringle M, Hubbard R, Tattersfield AE. Adverse effects of oral corticosteroids in relation to dose in patients with lung disease. Thorax. 2001;56(4):279–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bystryn J-C. Adjuvant therapy of pemphigus. Arch Dermatol. 1984;120(7):941–51. https://doi.org/10.1001/archderm.1984.01650430127024.

    Article  CAS  PubMed  Google Scholar 

  27. Martin LK, Werth VP, Villaneuva EV, Murrell DF. A systematic review of randomized controlled trials for pemphigus vulgaris and pemphigus foliaceus. J Am Acad Dermatol. 2011;64(5):903–8. https://doi.org/10.1016/j.jaad.2010.04.039.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Atzmony L, Hodak E, Leshem YA, Rosenbaum O, Gdalevich M, Anhalt GJ, Mimouni D. The role of adjuvant therapy in pemphigus: a systematic review and meta-analysis. J Am Acad Dermatol. 2015;73(2):264–71. https://doi.org/10.1016/j.jaad.2015.04.038.

    Article  PubMed  Google Scholar 

  29. Tedder TF, Engel P. CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol. Today. 1994;15(9):450–4. https://doi.org/10.1016/0167-5699(94)90276-3.

    Article  CAS  PubMed  Google Scholar 

  30. Riley JK, Sliwkowski MX. CD20: a gene in search of a function. Semin Oncol. 2000;27(6 Suppl 12):17–24.

    CAS  PubMed  Google Scholar 

  31. Cerny T, Borisch B, Introna M, Johnson P, Rose AL. Mechanism of action of rituximab. Anticancer Drugs. 2002;13(Suppl 2):S3–10.

    Article  CAS  PubMed  Google Scholar 

  32. Zambruno G, Borradori L. Rituximab immunotherapy in pemphigus: therapeutic effects beyond B-cell depletion. J Invest Dermatol. 2008;128(12):2745–7. https://doi.org/10.1038/jid.2008.330.

    Article  CAS  PubMed  Google Scholar 

  33. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–45.

    Article  CAS  PubMed  Google Scholar 

  34. Grillo-Lopez AJ, White CA, Varns C, Shen D, Wei A, McClure A, Dallaire BK. Overview of the clinical development of rituximab: first monoclonal antibody approved for the treatment of lymphoma. Semin Oncol. 1999;26(5 Suppl 14):66–73.

    CAS  PubMed  Google Scholar 

  35. Kheirallah S, Caron P, Gross E, Quillet-Mary A, Bertrand-Michel J, Fournie JJ, Laurent G, Bezombes C. Rituximab inhibits B-cell receptor signaling. Blood. 2010;115(5):985–94. https://doi.org/10.1182/blood-2009-08-237537.

    Article  CAS  PubMed  Google Scholar 

  36. Pedersen IM, Buhl AM, Klausen P, Geisler CH, Jurlander J. The chimeric anti-CD20 antibody rituximab induces apoptosis in B-cell chronic lymphocytic leukemia cells through a p38 mitogen activated protein-kinase-dependent mechanism. Blood. 2002;99(4):1314–9.

    Article  CAS  PubMed  Google Scholar 

  37. Weiner GJ. Rituximab: mechanism of action. Semin Hematol. 2010;47(2):115–23. https://doi.org/10.1053/j.seminhematol.2010.01.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Glennie MJ, French RR, Cragg MS, Taylor RP. Mechanisms of killing by anti-CD20 monoclonal antibodies. Mol Immunol. 2007;44(16):3823–37. https://doi.org/10.1016/j.molimm.2007.06.151.

    Article  CAS  PubMed  Google Scholar 

  39. Leandro MJ, Cambridge G, Ehrenstein MR, Edwards JC. Reconstitution of peripheral blood B cells after depletion with rituximab in patients with rheumatoid arthritis. Arthritis Rheum. 2006;54(2):613–20. https://doi.org/10.1002/art.21617.

    Article  CAS  PubMed  Google Scholar 

  40. Rituxan (rituximab)—first new drug for non-Hodgkin's lymphoma in a decade receives FDA clearance for marketing; 1997.

  41. Edwards JC, Cambridge G. B-cell targeting in rheumatoid arthritis and other autoimmune diseases. Nat Rev Immunol. 2006;6(5):394–403.

    Article  CAS  PubMed  Google Scholar 

  42. Kessel A, Rosner I, Toubi E. Rituximab: beyond simple B cell depletion. Clin Rev Allergy Immunol. 2008;34(1):74–9.

    Article  CAS  PubMed  Google Scholar 

  43. Schmidt E, Hennig K, Mengede C, Zillikens D, Kromminga A. Immunogenicity of rituximab in patients with severe pemphigus. Clin Immunol. 2009;132(3):334–41. https://doi.org/10.1016/j.clim.2009.05.007.

    Article  CAS  PubMed  Google Scholar 

  44. Lunardon L, Payne AS. Rituximab for autoimmune blistering diseases: recent studies, new insights. Giornale Ital Dermatol Venereol Organo Ufficiale, Soc Ital Dermatol Sifilogr. 2012;147(3):269–76.

    CAS  Google Scholar 

  45. Mouquet H, Musette P, Gougeon ML, Jacquot S, Lemercier B, Lim A, Gilbert D, Dutot I, Roujeau JC, D'Incan M, Bedane C, Tron F, Joly P. B-cell depletion immunotherapy in pemphigus: effects on cellular and humoral immune responses. J Invest Dermatol. 2008;128(12):2859–69. https://doi.org/10.1038/jid.2008.178.

    Article  CAS  PubMed  Google Scholar 

  46. Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity. Nat Immunol. 2001;2(9):764–6.

    Article  CAS  PubMed  Google Scholar 

  47. Eming R, Nagel A, Wolff-Franke S, Podstawa E, Debus D, Hertl M. Rituximab exerts a dual effect in pemphigus vulgaris. J Invest Dermatol. 2008;128(12):2850–8. https://doi.org/10.1038/jid.2008.172.

    Article  CAS  PubMed  Google Scholar 

  48. Vigna-Perez M, Hernandez-Castro B, Paredes-Saharopulos O, Portales-Perez D, Baranda L, Abud-Mendoza C, Gonzalez-Amaro R. Clinical and immunological effects of Rituximab in patients with lupus nephritis refractory to conventional therapy: a pilot study. Arthritis Res Ther. 2006;8(3):R83. https://doi.org/10.1186/ar1954.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Toubi E, Kessel A, Slobodin G, Boulman N, Pavlotzky E, Zisman D, Rozenbaum M, Rosner I. Changes in macrophage function after rituximab treatment in patients with rheumatoid arthritis. Ann Rheum Dis. 2007;66(6):818–20. https://doi.org/10.1136/ard.2006.062505.

    Article  CAS  PubMed  Google Scholar 

  50. Salopeka TG, Logsettyb S, Tredgetb EE. Anti-CD20 chimeric monoclonal antibody (rituximab) for the treatment of recalcitrant, life-threatening pemphigus vulgaris with implications in the pathogenesis of the disorder. J Am Acad Dermatol. 2002;47(5):785–8. https://doi.org/10.1067/mjd.2002.126273.

    Article  Google Scholar 

  51. Hebert V, Joly P. Rituximab in pemphigus. Immunotherapy. 2018;10(1):27–37. https://doi.org/10.2217/imt-2017-0104.

    Article  CAS  PubMed  Google Scholar 

  52. Ahmed AR, Spigelman Z, Cavacini LA, Posner MR. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. N Engl J Med. 2006;355(17):1772–9. https://doi.org/10.1056/NEJMoa062930.

    Article  CAS  PubMed  Google Scholar 

  53. Schmidt E, Seitz CS, Benoit S, Bröcker EB, Goebeler M. Rituximab in autoimmune bullous diseases: mixed responses and adverse effects. Br J Dermatol. 2007;156(2):352–6. https://doi.org/10.1111/j.1365-2133.2006.07646.x.

    Article  CAS  PubMed  Google Scholar 

  54. Joly P, Mouquet H, Roujeau J-C, D'Incan M, Gilbert D, Jacquot S, Gougeon M-L, Bedane C, Muller R, Dreno B, Doutre M-S, Delaporte E, Pauwels C, Franck N, Caux F, Picard C, Tancrede-Bohin E, Bernard P, Tron F, Hertl M, Musette P. A single cycle of rituximab for the treatment of severe pemphigus. N Engl J Med. 2007;357(6):545–52. https://doi.org/10.1056/NEJMoa067752.

    Article  CAS  PubMed  Google Scholar 

  55. Cho YT, Lee FY, Chu CY, Wang LF. First-line combination therapy with rituximab and corticosteroids is effective and safe for pemphigus. Acta Derm Venereol. 2014;94(4):472–3. https://doi.org/10.2340/00015555-1746.

    Article  PubMed  Google Scholar 

  56. Ingen-Housz-Oro S, Valeyrie-Allanore L, Cosnes A, Ortonne N, Hue S, Paul M, Wolkenstein P, Chosidow O. First-line treatment of pemphigus vulgaris with a combination of rituximab and high-potency topical corticosteroids. JAMA Dermatol. 2015;151(2):200–3. https://doi.org/10.1001/jamadermatol.2014.2421.

    Article  PubMed  Google Scholar 

  57. Joly P, Maho-Vaillant M, Prost-Squarcioni C, Hebert V, Houivet E, Calbo S, Caillot F, Golinski ML, Labeille B, Picard-Dahan C, Paul C, Richard M-A, Bouaziz JD, Duvert-Lehembre S, Bernard P, Caux F, Alexandre M, Ingen-Housz-Oro S, Vabres P, Delaporte E, Quereux G, Dupuy A, Debarbieux S, Avenel-Audran M, D'Incan M, Bedane C, Bénéton N, Jullien D, Dupin N, Misery L, Machet L, Beylot-Barry M, Dereure O, Sassolas B, Vermeulin T, Benichou J, Musette P. First-line rituximab combined with short-term prednisone versus prednisone alone for the treatment of pemphigus (Ritux 3): a prospective, multicentre, parallel-group, open-label randomised trial. Lancet. 2017;389(10083):2031–40. https://doi.org/10.1016/s0140-6736(17)30070-3.

    Article  CAS  PubMed  Google Scholar 

  58. Chen DM, Odueyungbo A, Csinady E, Gearhart L, Lehane P, Cheu M, Maho-Vaillant M, Prost-Squarcioni C, Hebert V, Houivet E, Calbo S, Caillot F, Golinski ML, Labeille B, Picard-Dahan C, Paul C, Richard MA, Bouaziz JD, Duvert-Lehembre S, Bernard P, Caux F, Alexandre M, Ingen-Housz-Oro S, Vabres P, Delaporte E, Quereux G, Dupuy A, Debarbieux S, Avenel-Audran M, D'Incan M, Bedane C, Beneton N, Jullien D, Dupin N, Misery L, Machet L, Beylot-Barry M, Dereure O, Sassolas B, Benichou J, Musette P, Joly P. Rituximab is an effective treatment in patients with pemphigus vulgaris and demonstrates a steroid-sparing effect. Br J Dermatol. 2019. https://doi.org/10.1111/bjd.18482.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Peterson JD, Chan LS. Effectiveness and side effects of anti-CD20 therapy for autoantibody-mediated blistering skin diseases: a comprehensive survey of 71 consecutive patients from the Initial use to 2007. Ther Clin Risk Manag. 2009;5(1):1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Scheinfeld N. A review of rituximab in cutaneous medicine. Dermatol Online J. 2006;12(1):3.

    PubMed  Google Scholar 

  61. Harman KE, Brown D, Exton LS, Groves RW, Hampton PJ, Mohd Mustapa MF, Setterfield JF, Yesudian PD. British Association of Dermatologists' guidelines for the management of pemphigus vulgaris 2017. Br J Dermatol. 2017;177(5):1170–201. https://doi.org/10.1111/bjd.15930.

    Article  CAS  PubMed  Google Scholar 

  62. Clatworthy MR, Watson CJ, Plotnek G, Bardsley V, Chaudhry AN, Bradley JA, Smith KG. B-cell-depleting induction therapy and acute cellular rejection. N Engl J Med. 2009;360(25):2683–5. https://doi.org/10.1056/NEJMc0808481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Feldman RJ. Paradoxical worsening of pemphigus vulgaris following rituximab therapy. Br J Dermatol. 2015;173(3):858–9. https://doi.org/10.1111/bjd.13823.

    Article  CAS  PubMed  Google Scholar 

  64. van de Veen W, Stanic B, Wirz OF, Jansen K, Globinska A, Akdis M. Role of regulatory B cells in immune tolerance to allergens and beyond. J Allergy Clin Immunol. 2016;138(3):654–65. https://doi.org/10.1016/j.jaci.2016.07.006.

    Article  CAS  PubMed  Google Scholar 

  65. Genentech (2018) FDA approves genentech’s Rituxan (Rituximab) for pemphigus vulgaris. https://www.gene.com/media/press-releases/14727/2018-06-07/fda-approves-genentechs-rituxan-rituxima. 2019.

  66. Murrell DF, Pena S, Joly P, Marinovic B, Hashimoto T, Diaz LA, Sinha AA, Payne AS, Daneshpazhooh M, Eming R, Jonkman MF, Mimouni D, Borradori L, Kim SC, Yamagami J, Lehman JS, Saleh MA, Culton DA, Czernik A, Zone JJ, Fivenson D, Ujiie H, Wozniak K, Akman-Karakas A, Bernard P, Korman NJ, Caux F, Drenovska K, Prost-Squarcioni C, Vassileva S, Feldman RJ, Cardones AR, Bauer J, Ioannides D, Jedlickova H, Palisson F, Patsatsi A, Uzun S, Yayli S, Zillikens D, Amagai M, Hertl M, Schmidt E, Aoki V, Grando SA, Shimizu H, Baum S, Cianchini G, Feliciani C, Iranzo P, Mascaro JM Jr, Kowalewski C, Hall R, Groves R, Harman KE, Marinkovich MP, Maverakis E, Werth VP. Diagnosis and management of pemphigus: recommendations by an international panel of experts. J Am Acad Dermatol. 2018. https://doi.org/10.1016/j.jaad.2018.02.021.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Roche H-L. A study to evaluate the efficacy and safety of Rituximab versus mycophenolate mofetil (MMF) in participants with pemphigus vulgaris (PV). https://clinicaltrials.gov/ct2/show/results/NCT02383589. 2019.

  68. Roche H-L. Phase III PEMPHIX study shows Roche’s MabThera/Rituxan (rituximab) superior to mycophenolate mofetil in patients with pemphigus vulgaris. https://www.roche.com/de/investors/updates/inv-update-2019-10-14.htm. 2019.

  69. Buch MH, Smolen JS, Betteridge N, Breedveld FC, Burmester G, Dorner T, Ferraccioli G, Gottenberg JE, Isaacs J, Kvien TK, Mariette X, Martin-Mola E, Pavelka K, Tak PP, van der Heijde D, van Vollenhoven RF, Emery P. Updated consensus statement on the use of rituximab in patients with rheumatoid arthritis. Ann Rheum Dis. 2011;70(6):909–20. https://doi.org/10.1136/ard.2010.144998.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Heelan K, Al-Mohammedi F, Smith MJ, Knowles S, Lansang P, Walsh S, Shear NH. Durable remission of pemphigus with a fixed-dose rituximab protocol. JAMA Dermatol. 2014;150(7):703–8. https://doi.org/10.1001/jamadermatol.2013.6739.

    Article  CAS  PubMed  Google Scholar 

  71. Kushner CJ, Wang S, Tovanabutra N, Tsai DE, Werth VP, Payne AS. Factors associated with complete remission after rituximab therapy for pemphigus. JAMA Dermatol. 2019;155(12):1404–9. https://doi.org/10.1001/jamadermatol.2019.3236.

    Article  PubMed Central  Google Scholar 

  72. Du FH, Mills EA, Mao-Draayer Y. Next-generation anti-CD20 monoclonal antibodies in autoimmune disease treatment. Auto Immun. Highlights. 2017;8(1):12. https://doi.org/10.1007/s13317-017-0100-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alduaij W, Illidge TM. The future of anti-CD20 monoclonal antibodies: are we making progress? Blood. 2011;117(11):2993–3001. https://doi.org/10.1182/blood-2010-07-298356.

    Article  CAS  PubMed  Google Scholar 

  74. Huang A, Madan RK, Levitt J. Future therapies for pemphigus vulgaris: Rituximab and beyond. J Am Acad Dermatol. 2016;74(4):746–53. https://doi.org/10.1016/j.jaad.2015.11.008.

    Article  CAS  PubMed  Google Scholar 

  75. Klein C, Lammens A, Schäfer W, Georges G, Schwaiger M, Mössner E, Hopfner K-P, Umaña P, Niederfellner G. Epitope interactions of monoclonal antibodies targeting CD20 and their relationship to functional properties. mAbs. 2013; 5(1):22–33. https://doi.org/10.4161/mabs.22771

  76. Hagenbeek A, Gadeberg O, Johnson P, Møller Pedersen L, Walewski J, Hellmann A, Link BK, Robak T, Wojtukiewicz M, Pfreundschuh M, Kneba M, Engert A, Sonneveld P, Flensburg M, Petersen J, Losic N, Radford J. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111(12):5486–95. https://doi.org/10.1182/blood-2007-10-117671.

    Article  CAS  PubMed  Google Scholar 

  77. Teeling JL, Mackus WJM, Wiegman LJJM, van den Brakel JHN, Beers SA, French RR, van Meerten T, Ebeling S, Vink T, Slootstra JW, Parren PWHI, Glennie MJ, van de Winkel JGJ. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177(1):362–71. https://doi.org/10.4049/jimmunol.177.1.362.

    Article  CAS  PubMed  Google Scholar 

  78. DrugBank (2019) Ofatumumab. https://www.drugbank.ca/drugs/DB06650. 2019

  79. Hillmen P, Robak T, Janssens A, Babu KG, Kloczko J, Grosicki S, Doubek M, Panagiotidis P, Kimby E, Schuh A, Pettitt AR, Boyd T, Montillo M, Gupta IV, Wright O, Dixon I, Carey JL, Chang CN, Lisby S, McKeown A, Offner F, Investigators CS. Chlorambucil plus ofatumumab versus chlorambucil alone in previously untreated patients with chronic lymphocytic leukaemia (COMPLEMENT 1): a randomised, multicentre, open-label phase 3 trial. Lancet (London, England). 2015;385(9980):1873–83. https://doi.org/10.1016/S0140-6736(15)60027-7.

    Article  CAS  Google Scholar 

  80. Taylor PC, Quattrocchi E, Mallett S, Kurrasch R, Petersen J, Chang DJ. Ofatumumab, a fully human anti-CD20 monoclonal antibody, in biological-naive, rheumatoid arthritis patients with an inadequate response to methotrexate: a randomised, double-blind, placebo-controlled clinical trial. Ann Rheum Dis. 2011;70(12):2119–255. https://doi.org/10.1136/ard.2011.151522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. ClinicalTrials.gov. Efficacy and safety of ofatumumab in treatment of pemphigus vulgaris. https://clinicaltrials.gov/ct2/show/results/NCT01920477. 2013.

  82. Medicine NUSNLo. OPV116910: a randomized, double-blind, placebo-controlled, parallel-group study to investigate the efficacy and safety of ofatumumab injection for subcutaneous use in subjects with pemphigus vulgaris. https://clinicaltrials.gov/ct2/show/study/NCT01920477. 2018.

  83. Registry CT. OPV117059: a long-term extension study of ofatumumab injection for subcutaneous use in subjects with pemphigus vulgaris. https://ichgcp.net/clinical-trials-registry/NCT02613910/. 2016.

  84. Health Nio. ClinicalTrials.gov long-term extension study of ofatumumab in subjects with pemphigus vulgaris NCT02613910. https://clinicaltrials.gov/ct2/show/NCT02613910. 2017.

  85. Taylor NP. Novartis stops PhIII trial of Genmab's Arzerra after buying rights from GSK. https://www.fiercebiotech.com/financials/novartis-stops-phiii-trial-of-genmab-s-arzerra-after-buying-rights-from-gsk. 2016.

  86. Quattrocchi E, Østergaard M, Taylor PC, van Vollenhoven RF, Chu M, Mallett S, Perry H, Kurrasch R. Safety of repeated open-label treatment courses of intravenous ofatumumab, a human anti-CD20 monoclonal antibody, in rheumatoid arthritis: results from three clinical trials. PLoS ONE. 2016;11(6):e0157961. https://doi.org/10.1371/journal.pone.0157961.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rapp M, Pentland A, Richardson C. Successful treatment of pemphigus vulgaris with ofatumumab. J Drugs Dermatol. (JDD). 2018;17(12):1338–9.

    Google Scholar 

  88. Milani C, Castillo J. Veltuzumab, an anti-CD20 mAb for the treatment of non-Hodgkin's lymphoma, chronic lymphocytic leukemia and immune thrombocytopenic purpura. Curr Opin Mol Ther. 2009;11(2):200–7.

    CAS  PubMed  Google Scholar 

  89. Goldenberg DM, Morschhauser F, Wegener WA. Veltuzumab (humanized anti-CD20 monoclonal antibody): characterization, current clinical results, and future prospects. Leukemia Lymphoma. 2010;51(5):747–55. https://doi.org/10.3109/10428191003672123.

    Article  CAS  PubMed  Google Scholar 

  90. Goldenberg DM, Rossi EA, Stein R, Cardillo TM, Czuczman MS, Hernandez-Ilizaliturri FJ, Hansen HJ, Chang C-H. Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood. 2009;113(5):1062–70. https://doi.org/10.1182/blood-2008-07-168146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Biocentury/BCIQ. Subcutaneous veltuzumab, veltuzumab (hA20, IMMU-106). https://bciq.biocentury.com/products/subcutaneous_veltuzumab_veltuzumab_(ha20_immu-106). 2019.

  92. Ellebrecht CT, Choi EJ, Allman DM, Tsai DE, Wegener WA, Goldenberg DM, Payne AS. Subcutaneous veltuzumab, a humanized anti-CD20 antibody, in the treatment of refractory pemphigus vulgaris. Subcutaneous veltuzumab in refractory pemphigus. JAMA Dermatol. 2014;150(12):1331–5. https://doi.org/10.1001/jamadermatol.2014.1939.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Immunomedics. Immunomedics announces termination of agreement and return of worldwide rights to veltuzumab for all non-cancer indications. https://www.globenewswire.com/news-release/2013/10/09/579382/10052008/en/Immunomedics-Announces-Termination-of-Agreement-and-Return-of-Worldwide-Rights-to-Veltuzumab-for-All-Non-Cancer-Indications.html. 2013.

  94. Liang C, Tian D, Ren X, Ding S, Jia M, Xin M, Thareja S. The development of Bruton's tyrosine kinase (BTK) inhibitors from 2012 to 2017: a mini-review. Eur J Med Chem. 2018;151:315–26. https://doi.org/10.1016/j.ejmech.2018.03.062.

    Article  CAS  PubMed  Google Scholar 

  95. Niiro H, Clark EA. Regulation of B-cell fate by antigen-receptor signals. Nat Rev Immunol. 2002;2(12):945–56.

    Article  CAS  PubMed  Google Scholar 

  96. Jingjing W, Christina L, Stella T, Delong L. Second-generation inhibitors of Bruton tyrosine kinase. J Hematol Oncol. 2016;9:80. https://doi.org/10.1186/s13045-016-0313-y.

    Article  CAS  Google Scholar 

  97. Anderson JS, Teutsch M, Dong Z, Wortis HH. An essential role for Bruton's [corrected] tyrosine kinase in the regulation of B-cell apoptosis. Proc Natl Acad Sci USA. 1996;93(20):10966–71.

    Article  CAS  PubMed  Google Scholar 

  98. Conley ME, Dobbs AK, Farmer DM, Kilic S, Paris K, Grigoriadou S, Coustan-Smith E, Howard V, Campana D. Primary B cell immunodeficiencies: comparisons and contrasts. Annu Rev Immunol. 2009;27(1):199–227. https://doi.org/10.1146/annurev.immunol.021908.132649.

    Article  CAS  PubMed  Google Scholar 

  99. Bruton OC. Agammaglobulinemia. Pediatrics. 1952;9(6):722–8.

    CAS  PubMed  Google Scholar 

  100. Mohamed AJ, Yu L, Bäckesjö C-M, Vargas L, Faryal R, Aints A, Christensson B, Berglöf A, Vihinen M, Nore BF, Edvard Smith CI. Bruton’s tyrosine kinase (Btk): function, regulation, and transformation with special emphasis on the PH domain. Immunol Rev. 2009;228(1):58–73. https://doi.org/10.1111/j.1600-065X.2008.00741.x.

    Article  CAS  PubMed  Google Scholar 

  101. Kersseboom R, Kil L, Flierman R, van der Zee M, Dingjan GM, Middendorp S, Maas A, Hendriks RW. Constitutive activation of Bruton's tyrosine kinase induces the formation of autoreactive IgM plasma cells. Eur J Immunol. 2010;40(9):2643–54. https://doi.org/10.1002/eji.201040521.

    Article  CAS  PubMed  Google Scholar 

  102. Li T, Tsukada S, Satterthwaite A, Havlik MH, Park H, Takatsu K, Witte ON. Activation of Bruton's tyrosine kinase (BTK) by a point mutation in its pleckstrin homology (PH) domain. Immunity. 1995;2(5):451–60.

    Article  CAS  PubMed  Google Scholar 

  103. Hendriks RW. Drug discovery: new Btk inhibitor holds promise. Nat Chem Biol. 2011;7(1):4–5. https://doi.org/10.1038/nchembio.502.

    Article  CAS  PubMed  Google Scholar 

  104. Pal Singh S, Dammeijer F, Hendriks RW. Role of Bruton's tyrosine kinase in B cells and malignancies. Mol Cancer. 2018;17(1):57. https://doi.org/10.1186/s12943-018-0779-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. O'Brien S, Furman RR, Coutre S, Flinn IW, Burger JA, Blum K, Sharman J, Wierda W, Jones J, Zhao W, Heerema NA, Johnson AJ, Luan Y, James DF, Chu AD, Byrd JC. Single-agent ibrutinib in treatment-naïve and relapsed/refractory chronic lymphocytic leukemia: a 5-year experience. Blood. 2018;131(17):1910–9. https://doi.org/10.1182/blood-2017-10-810044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Bender AT, Gardberg A, Pereira A, Johnson T, Wu Y, Grenningloh R, Head J, Morandi F, Haselmayer P, Liu-Bujalski L. Ability of Bruton’s tyrosine kinase inhibitors to sequester Y551 and prevent phosphorylation determines potency for inhibition of Fc receptor but not B-cell receptor signaling. Mol Pharmacol. 2017;91(3):208–19. https://doi.org/10.1124/mol.116.107037.

    Article  CAS  PubMed  Google Scholar 

  107. Woyach JA, Liu TM, Ruppert AS, Jaglowski SM, Blum KA, Lozanski A, Johnson AJ, Byrd JC, Ozer HG, Yilmaz AS, Lozanski G, Furman RR, Zapatka M, Lichter P, Stilgenbauer S, Xue L, Li DHH, Steggerda SM, James DF, Buggy JJ, Chang BY, Dave SS, Zhang J, Barrientos JC, Versele M. Resistance mechanisms for the Bruton's tyrosine kinase inhibitor ibrutinib. N Engl J Med. 2014;370(24):2286–94. https://doi.org/10.1056/NEJMoa1400029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Pan Z, Scheerens H, Li S-J, Schultz BE, Sprengeler PA, Burrill LC, Mendonca RV, Sweeney MD, Scott KCK, Grothaus PG, Jeffery DA, Spoerke JM, Honigberg LA, Young PR, Dalrymple SA, Palmer JT. Discovery of selective irreversible inhibitors for Bruton’s tyrosine kinase. ChemMedChem. 2007;2(1):58–61. https://doi.org/10.1002/cmdc.200600221.

    Article  CAS  PubMed  Google Scholar 

  109. Burger JA. Bruton's tyrosine kinase (BTK) inhibitors in clinical trials. Curr Hematol Malignancy Rep. 2014;9(1):44–9. https://doi.org/10.1007/s11899-013-0188-8.

    Article  Google Scholar 

  110. Dubovsky JA, Beckwith KA, Natarajan G, Woyach JA, Jaglowski S, Zhong Y, Hessler JD, Liu T-M, Chang BY, Larkin KM, Stefanovski MR, Chappell DL, Frissora FW, Smith LL, Smucker KA, Flynn JM, Jones JA, Andritsos LA, Maddocks K, Lehman AM, Furman R, Sharman J, Mishra A, Caligiuri MA, Satoskar AR, Buggy JJ, Muthusamy N, Johnson AJ, Byrd JC. Ibrutinib is an irreversible molecular inhibitor of ITK driving a Th1-selective pressure in T lymphocytes. Blood. 2013;122(15):2539–49. https://doi.org/10.1182/blood-2013-06-507947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Langrish CL, Bradshaw JM, Owens TD, Campbell RL, Francesco MR, Karr DE, Murray SK, Quesenberry RC, Smith PF, Taylor MD, Zhu J, Nunn PA, Gourlay SG. PRN1008, a reversible covalent BTK inhibitor in clinical development for immune thrombocytopenic purpura. Blood. 2017;130(Suppl 1):1052–1052.

    Google Scholar 

  112. Smith PF, Krishnarajah J, Nunn PA, Hill RJ, Karr D, Tam D, Masjedizadeh M, Gourlay SG. SAT0232 a phase 1 clinical trial of PRN1008, an oral, reversible, covalent BTK inhibitor demonstrates clinical safety and therapeutic levels of BTK occupancy without sustained systemic exposure. Ann Rheum Dis. 2015;74(Suppl 2):742–742. https://doi.org/10.1136/annrheumdis-2015-eular.4289.

    Article  Google Scholar 

  113. Biopharma P. An open-label, phase 2, pilot study investigating the safety, clinical activity, pharmacokinetics, and pharmacodynamics of oral treatment with the BTK inhibitor PRN1008 in patients with newly diagnosed or relapsing pemphigus vulgaris. A study of PRN1008 in adult patients with pemphigus vulgaris. https://ichgcp.net/clinical-trials-registry/NCT02704429. 2016.

  114. Lane A. Principia biopharma reports positive PRN1008 phase 2 top-line results and initiates phase 3 pemphigus program. https://www.pemphigus.org/principia-biopharma-reports-positive-prn1008-phase-2-top-line-results-and-initiates-phase-3-pemphigus-program/. 2018.

  115. Murrell D, Stavropoulos P, Patsatsi A, Zeeli T, Baum S, Bassukas I, Caux F, Roussaki A, Sinclair R, Kern J, Gourlay S, Joly P. LB1509 anti-desmoglein levels & response to the BTK inhibitor PRN1008 in pemphigus. J Invest Dermatol. 138(9). https://doi.org/10.1016/j.jid.2018.06.040. 2018.

  116. Biopharma P. A study of PRN1008 in patients with pemphigus. https://clinicaltrials.gov/ct2/show/NCT03762265?term=pemphigus&rank=4. 2018.

  117. Biopharma P. Principia announces positive preliminary data of PRN1008 from its ongoing phase 2 part B trial in pemphigus. https://ir.principiabio.com/news-releases/news-release-details/principia-announces-positive-preliminary-data-prn1008-its. 2019.

  118. Dhillon S. Tirabrutinib: first approval. Drugs. 2020;80(8):835–40. https://doi.org/10.1007/s40265-020-01318-8.

    Article  CAS  PubMed  Google Scholar 

  119. Schroeder HW Jr, Cavacini L. Structure and function of immunoglobulins. J Allergy Clin Immunol. 2010;125(2):S41–S52. https://doi.org/10.1016/j.jaci.2009.09.046.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Roopenian DC, Akilesh S. FcRn: the neonatal Fc receptor comes of age. Nat Rev Immunol. 2007;7(9):715–25. https://doi.org/10.1038/nri2155.

    Article  CAS  PubMed  Google Scholar 

  121. Kuo TT, Aveson VG. Neonatal Fc receptor and IgG-based therapeutics. MAbs. 2011;3(5):422–30. https://doi.org/10.4161/mabs.3.5.16983.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Qiao SW, Kobayashi K, Johansen FE, Sollid LM, Andersen JT, Milford E, Roopenian DC, Lencer WI, Blumberg RS. Dependence of antibody-mediated presentation of antigen on FcRn. Proc Natl Acad Sci U S A. 2008;105(27):9337–422. https://doi.org/10.1073/pnas.0801717105.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Liu X, Ye L, Christianson GJ, Yang J-Q, Roopenian DC, Zhu X. NF-kappaB signaling regulates functional expression of the MHC class I-related neonatal Fc receptor for IgG via intronic binding sequences. J Immunol. (Baltimore, Md : 1950). 2007;179(5):2999–3011.

  124. Liu X, Ye L, Bai Y, Mojidi H, Simister NE, Zhu X. Activation of the JAK/STAT-1 signaling pathway by IFN-gamma can down-regulate functional expression of the MHC class I-related neonatal Fc receptor for IgG. J Immunol. 2008;181(1):449–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Cauza K, Hinterhuber G, Dingelmaier-Hovorka R, Brugger K, Klosner G, Horvat R, Wolff K, Foedinger D. Expression of FcRn, the MHC class I-related receptor for IgG, human keratinocytes. J Invest Dermatol. 2005;124(1):132–9. https://doi.org/10.1111/j.0022-202X.2004.23542.x.

    Article  CAS  PubMed  Google Scholar 

  126. Cianga P, Cianga C, Plamadeala P, Branisteanu D, Carasevici E. The neonatal Fc receptor (FcRn) expression in the human skin. Virchows Arch. 2007;451(4):859–60. https://doi.org/10.1007/s00428-007-0467-7.

    Article  PubMed  Google Scholar 

  127. Baker K, Qiao S-W, Kuo TT, Aveson VG, Platzer B, Andersen J-T, Sandlie I, Chen Z, de Haar C, Lencer WI, Fiebiger E, Blumberg RS. Neonatal Fc receptor for IgG (FcRn) regulates cross-presentation of IgG immune complexes by CD8CD11b+ dendritic cells. Proc Natl Acad Sci USA. 2011;108(24):9927–32.

    Article  CAS  PubMed  Google Scholar 

  128. Brambell FW. The transmission of immune globulins from the mother to the foetal and newborn young. Proc Nutr Soc. 1969;28(1):35–41.

    Article  CAS  PubMed  Google Scholar 

  129. Rodewald R, Kraehenbuhl JP. Receptor-mediated transport of IgG. J Cell Biol. 1984;99(1 Pt 2):159s–64s.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Simister NE, Mostov KE. An Fc receptor structurally related to MHC class I antigens. Nature. 1989;337(6203):184–7.

    Article  CAS  PubMed  Google Scholar 

  131. Rath T, Kuo TT, Baker K, Qiao SW, Kobayashi K, Yoshida M, Roopenian D, Fiebiger E, Lencer WI, Blumberg RS. The immunologic functions of the neonatal Fc receptor for IgG. J Clin Immunol. 2013;33(Suppl 1):9–17. https://doi.org/10.1007/s10875-012-9768-y.

    Article  CAS  Google Scholar 

  132. Kim J, Hayton WL, Robinson JM, Anderson CL. Kinetics of FcRn-mediated recycling of IgG and albumin in human: pathophysiology and therapeutic implications using a simplified mechanism-based model. Clin Immunol. 2007;122(2):146–55. https://doi.org/10.1016/j.clim.2006.09.001.

    Article  CAS  PubMed  Google Scholar 

  133. Sesarman A, Vidarsson G, Sitaru C. The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci. 2010;67(15):2533–50. https://doi.org/10.1007/s00018-010-0318-6.

    Article  CAS  PubMed  Google Scholar 

  134. Ghetie V, Hubbard JG, Kim JK, Tsen MF, Lee Y, Ward ES. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur J Immunol. 1996;26(3):690–6.

    Article  CAS  PubMed  Google Scholar 

  135. Liu L, Garcia AM, Santoro H, Zhang Y, McDonnell K, Dumont J, Bitonti A. Amelioration of experimental autoimmune myasthenia gravis in rats by neonatal FcR blockade. J Immunol. (Baltimore, Md : 1950). 2007;178(8):5390–5398.

  136. Mezo AR, McDonnell KA, Hehir CA, Low SC, Palombella VJ, Stattel JM, Kamphaus GD, Fraley C, Zhang Y, Dumont JA, Bitonti AJ. Reduction of IgG in nonhuman primates by a peptide antagonist of the neonatal Fc receptor FcRn. Proc Natl Acad Sci USA. 2008;105(7):2337–422. https://doi.org/10.1073/pnas.0708960105.

    Article  PubMed  Google Scholar 

  137. Li N, Zhao M, Hilario-Vargas J, Prisayanh P, Warren S, Diaz LA, Roopenian DC, Liu Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J Clin Invest. 2005;115(12):3440–50. https://doi.org/10.1172/JCI24394.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Low SC, Mezo AR. Inhibitors of the FcRn:IgG protein-protein interaction. AAPS J. 2009;11(3):432–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Blumberg L, Humphries JE, Lasseter KC, Blumberg RS. SYNT001: a humanized IgG4 monoclonal antibody that disrupts the interaction of FcRn and IgG for the treatment of IgG-mediated autoimmune diseases. Blood. 2017;130(Suppl 1):3483–3483.

    Google Scholar 

  140. Werth VP, Culton D, Blumberg L, Humphries J, Blumberg R, Hall R. 538 FcRn blockade with SYNT001 for the treatment of pemphigus. J Invest Dermatol. 138(5). https://doi.org/10.1016/j.jid.2018.03.546

  141. Duffy S. Novel treatment for pemphigus granted orphan drug designation. MPR the right dose of information. https://www.empr.com/home/news/drugs-in-the-pipeline/novel-treatment-for-pemphigus-granted-orphan-drug-designation/. 2018.

  142. Bayry J, Kaveri SV. Kill 'em all: efgartigimod immunotherapy for autoimmune diseases. Trends Pharmacol Sci. 2018;39(11):919–22. https://doi.org/10.1016/j.tips.2018.08.004.

    Article  CAS  PubMed  Google Scholar 

  143. Vaccaro C, Zhou J, Ober RJ, Ward ES. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol. 2005;23(10):1283–8. https://doi.org/10.1038/nbt1143.

    Article  CAS  PubMed  Google Scholar 

  144. Ulrichts P, Guglietta A, Dreier T, van Bragt T, Vr H, Hofman E, Vankerckhoven B, Verheesen P, Ongenae N, Lykhopiy V, Enriquez FJ, Cho J, Ober RJ, Ward ES, de Haard H, Leupin N. Neonatal Fc receptor antagonist efgartigimod safely and sustainably reduces IgGs in humans. J Clin Invest. 2018;128(10):4372–86. https://doi.org/10.1172/JCI97911.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Argenx. Argenx announces data from Phase 1 study of efgartigimod (ARGX-113) subcutaneous formulation demonstrating comparable characteristics to intravenous formulation. https://www.argenx.com/en-GB/news-internal/argenx-announces-data-from-phase-1-study-of-efgartigimod-argx-113-subcutaneous-formulation-demonstrating-comparable-characteristics-to-intravenous-formulation/30189/. 2018.

  146. House D. Argenx's efgartigimod shows encouraging action in mid-stage pemphigus vulgaris study. Seeking Alpha. https://seekingalpha.com/news/3365112-argenxs-efgartigimod-shows-encouraging-action-mid-stage-pemphigus-vulgaris-study. 2018.

  147. Argenx. Argenx provides strategic outlook advancing late-stage pipeline towards ‘argenx 2021’ vision. https://www.argenx.com/en-GB/news-internal/argenx-provides-strategic-outlook-advancing-late-stage-pipeline-towards-argenx-2021-vision/30243/. 2020.

  148. Ball J, Archer S, Ward S. PI3K inhibitors as potential therapeutics for autoimmune disease. Drug Discov Today. 2014;19(8):1195–9. https://doi.org/10.1016/j.drudis.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  149. Ghigo A, Damilano F, Braccini L, Hirsch E. PI3K inhibition in inflammation: Toward tailored therapies for specific diseases. BioEssays. 2010;32(3):185–96. https://doi.org/10.1002/bies.200900150.

    Article  CAS  PubMed  Google Scholar 

  150. Corporation I. A study of the safety and tolerability of parsaclisib in pemphigus vulgaris. https://clinicaltrials.gov/ct2/show/NCT03780166?cond=pemphigus&rank=2. 2018.

  151. Corporation I. A study of the safety and tolerability of INCB050465 in pemphigus vulgaris. https://clinicaltrials.gov/ct2/show/NCT03780166?cond=pemphigus+vulgaris&draw=2&rank=1. 2019.

  152. Forero-Torres A, Ramchandren R, Yacoub A, Wertheim MS, Edenfield WJ, Caimi P, Gutierrez M, Akard L, Escobar C, Call J, Persky D, Iyer S, DeMarini DJ, Zhou L, Chen X, Dawkins F, Phillips TJ. Parsaclisib, a potent and highly selective PI3Kdelta inhibitor, in patients with relapsed or refractory B-cell malignancies. Blood. 2019;133(16):1742–52. https://doi.org/10.1182/blood-2018-08-867499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Saklatvala J. The p38 MAP kinase pathway as a therapeutic target in inflammatory disease. Curr Opin Pharmacol. 2004;4(4):372–7.

    Article  CAS  PubMed  Google Scholar 

  154. Cuenda A, Rousseau S. p38 MAP-kinases pathway regulation, function and role in human diseases. Biochim Biophys Acta. 2007;1773(8):1358–75. https://doi.org/10.1016/j.bbamcr.2007.03.010.

    Article  CAS  PubMed  Google Scholar 

  155. Lee JC, Laydon JT, McDonnell PC, Gallagher TF, Kumar S, Green D, McNulty D, Blumenthal MJ, Heys JR, Landvatter SW, Strickler JE, McLaughlin MM, Siemens IR, Fisher SM, Livi GP, White JR, Adams JL, Young PR. A protein kinase involved in the regulation of inflammatory cytokine biosynthesis. Nature. 1994;372(6508):739–46. https://doi.org/10.1038/372739a0.

    Article  CAS  PubMed  Google Scholar 

  156. Coulthard LR, White DE, Jones DL, McDermott MF, Burchill SA. p38(MAPK): stress responses from molecular mechanisms to therapeutics. Trends Mol Med. 2009;15(8):369–79. https://doi.org/10.1016/j.molmed.2009.06.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Registry CT. A phase 2 open-label uncontrolled pilot study of KC706 in patients with stable, active pemphigus vulgaris. Use of KC706 for the treatment of pemphigus vulgaris. https://ichgcp.net/clinical-trials-registry/NCT00606749/. 2008.

  158. Mavropoulos A, Orfanidou T, Liaskos C, Smyk DS, Billinis C, Blank M, Rigopoulou EI, Bogdanos DP. p38 mitogen-activated protein kinase (p38 MAPK)-mediated autoimmunity: lessons to learn from ANCA vasculitis and pemphigus vulgaris. Autoimmun Rev. 2013;12(5):580–90. https://doi.org/10.1016/j.autrev.2012.10.019.

    Article  CAS  PubMed  Google Scholar 

  159. Berkowitz P, Hu P, Liu Z, Diaz LA, Enghild JJ, Chua MP, Rubenstein DS. Desmosome signaling. Inhibition of p38MAPK prevents pemphigus vulgaris IgG-induced cytoskeleton reorganization. J Biol Chem. 2005;280 (25):23778–23784

  160. Berkowitz P, Chua M, Liu Z, Diaz LA, Rubenstein DS. Autoantibodies in the autoimmune disease pemphigus foliaceus induce blistering via p38 mitogen-activated protein kinase-dependent signaling in the skin. Am J Pathol. 2008;173(6):1628–36. https://doi.org/10.2353/ajpath.2008.080391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Mao X, Sano Y, Park JM, Payne AS. p38 MAPK activation is downstream of the loss of intercellular adhesion in pemphigus vulgaris. J Biol Chem. 2011;286(2):1283–91. https://doi.org/10.1074/jbc.M110.172874.

    Article  CAS  PubMed  Google Scholar 

  162. Mavropoulos A, Orfanidou T, Liaskos C, Smyk DS, Spyrou V, Sakkas LI, Rigopoulou EI, Bogdanos DP. p38 MAPK signaling in pemphigus: implications for skin autoimmunity. Autoimmune Dis. 2013;2013:728529–728529. https://doi.org/10.1155/2013/728529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Registry CT. A phase 2 open-label uncontrolled pilot study of KC706 in patients with stable, active pemphigus vulgaris. Use of KC706 for the treatment of pemphigus vulgaris. https://ichgcp.net/clinical-trials-registry/NCT00606749/. 2007.

  164. Gaestel M, Kotlyarov A, Kracht M. Targeting innate immunity protein kinase signalling in inflammation. Nat Rev Drug Discov. 2009;8(6):480–99. https://doi.org/10.1038/nrd2829.

    Article  CAS  PubMed  Google Scholar 

  165. GSK launches mega trial of p38 MAPK inhibitor in acute coronary syndrome. Nat Rev Drug Discov. 2014;13(7):485–485. https://doi.org/10.1038/nrd4386

  166. Izumi K, Bieber K, Ludwig RJ. Current clinical trials in pemphigus and pemphigoid. Front Immunol. 2019;10:978. https://doi.org/10.3389/fimmu.2019.00978.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Schneider P, MacKay F, Steiner V, Hofmann K, Bodmer JL, Holler N, Ambrose C, Lawton P, Bixler S, Acha-Orbea H, Valmori D, Romero P, Werner-Favre C, Zubler RH, Browning JL, Tschopp J. BAFF, a novel ligand of the tumor necrosis factor family, stimulates B cell growth. J Exp Med. 1999;189(11):1747–56. https://doi.org/10.1084/jem.189.11.1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Moisini I, Davidson A. BAFF: a local and systemic target in autoimmune diseases. Clin Exp Immunol. 2009;158(2):155–63. https://doi.org/10.1111/j.1365-2249.2009.04007.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Pharmaceuticals N. Study of efficacy and safety of VAY736 in patients with pemphigus vulgaris. https://clinicaltrials.gov/ct2/show/NCT01930175?cond=pemphigus&rank=4. 2018.

  170. Asashima N, Fujimoto M, Watanabe R, Nakashima H, Yazawa N, Okochi H, Tamaki K. Serum levels of BAFF are increased in bullous pemphigoid but not in pemphigus vulgaris. Br J Dermatol. 2006;155(2):330–6. https://doi.org/10.1111/j.1365-2133.2006.07305.x.

    Article  CAS  PubMed  Google Scholar 

  171. Liu Z, Li N, Diaz LA. Inhibition of pemphigus vulgaris by targeting of the CD40-CD154 co-stimulatory pathway: a step toward antigen-specific therapy? J Invest Dermatol. 2006;126(1):11–3. https://doi.org/10.1038/sj.jid.5700059.

    Article  CAS  PubMed  Google Scholar 

  172. Aoki-Ota M, Kinoshita M, Ota T, Tsunoda K, Iwasaki T, Tanaka S, Koyasu S, Nishikawa T, Amagai M. Tolerance induction by the blockade of CD40/CD154 interaction in pemphigus vulgaris mouse model. J Invest Dermatol. 2006;126(1):105–13. https://doi.org/10.1038/sj.jid.5700016.

    Article  CAS  PubMed  Google Scholar 

  173. Elgueta R, Benson MJ, de Vries VC, Wasiuk A, Guo Y, Noelle RJ. Molecular mechanism and function of CD40/CD40L engagement in the immune system. Immunol Rev. 2009;229(1):152–72. https://doi.org/10.1111/j.1600-065X.2009.00782.x.

    Article  CAS  PubMed  Google Scholar 

  174. Satyam A, Khandpur S, Sharma VK, Sharma A. Involvement of TH1/TH2 cytokines in the pathogenesis of autoimmune skin disease—pemphigus vulgaris. Immunol Invest. 2009;38(6):498–509. https://doi.org/10.1080/08820130902943097.

    Article  CAS  PubMed  Google Scholar 

  175. Caproni M, Giomi B, Cardinali C, Salvatore E, Pestelli E, D'Agata A, Bianchi B, Toto P, Feliciani C, Fabbri P. Further support for a role for Th2-like cytokines in blister formation of pemphigus. Clin Immunol. 2001;98(2):264–71. https://doi.org/10.1006/clim.2000.4974.

    Article  CAS  PubMed  Google Scholar 

  176. Tavakolpour S, Tavakolpour V. Interleukin 4 inhibition as a potential therapeutic in pemphigus. Cytokine. 2016;77:189–95. https://doi.org/10.1016/j.cyto.2015.09.017.

    Article  CAS  PubMed  Google Scholar 

  177. Arellano B, Graber DJ, Sentman CL. Regulatory T cell-based therapies for autoimmunity. Discov Med. 2016;22(119):73–80.

    PubMed  PubMed Central  Google Scholar 

  178. El-Zawahry B, Bassiouny D, Hegazy R, Gawdat H, Shalaby S, Khorshied M, Saleh MA. Rituximab treatment in pemphigus vulgaris: effect on circulating Tregs. Arch Dermatol Res. 2017;309(7):551–6. https://doi.org/10.1007/s00403-017-1754-z.

    Article  CAS  PubMed  Google Scholar 

  179. Corthay A. How do regulatory T cells work? Scand J Immunol. 2009;70(4):326–36. https://doi.org/10.1111/j.1365-3083.2009.02308.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Romano M, Fanelli G, Albany CJ, Giganti G, Lombardi G. Past, present, and future of regulatory T cell therapy in transplantation and autoimmunity. Front Immunol. 2019;10(43). https://doi.org/10.3389/fimmu.2019.00043

  181. (NIAID) NioAaID. Polyclonal regulatory T cells (PolyTregs) for pemphigus. https://clinicaltrials.gov/ct2/show/NCT03239470?term=bluestone&draw=2. 2018.

  182. Sugiyama H, Matsue H, Nagasaka A, Nakamura Y, Tsukamoto K, Shibagaki N, Kawamura T, Kitamura R, Ando N, Shimada S. CD4+CD25high regulatory T cells are markedly decreased in blood of patients with pemphigus vulgaris. Dermatology (Basel, Switzerland). 2007;214(3):210–20. https://doi.org/10.1159/000099585.

    Article  CAS  Google Scholar 

  183. Fraser H, Safinia N, Grageda N, Thirkell S, Lowe K, Fry LJ, Scotta C, Hope A, Fisher C, Hilton R, Game D, Harden P, Bushell A, Wood K, Lechler RI, Lombardi G. A rapamycin-based GMP-compatible process for the isolation and expansion of regulatory T cells for clinical trials. Mol Ther Methods Clin Dev. 2018;8:198–209. https://doi.org/10.1016/j.omtm.2018.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Thomson AW, Turnquist HR, Raimondi G. Immunoregulatory functions of mTOR inhibition. Nat Rev Immunol. 2009;9(5):324–37. https://doi.org/10.1038/nri2546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Fujio K, Okamura T, Sumitomo S, Yamamoto K. Regulatory T cell-mediated control of autoantibody-induced inflammation. Front Immunol. 2012;3:28–28. https://doi.org/10.3389/fimmu.2012.00028.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Esensten JH, Muller YD, Bluestone JA, Tang Q. Regulatory T-cell therapy for autoimmune and autoinflammatory diseases: the next frontier. J Allergy Clin Immunol. 2018;142(6):1710–8. https://doi.org/10.1016/j.jaci.2018.10.015.

    Article  CAS  PubMed  Google Scholar 

  187. Lee J, Ellebrecht CT, Mao X, Nace A, Choi EJ, Milone MC, Payne AS. 461 Preclinical development of desmoglein chimeric autoantibody receptor (CAAR) T cells for pemphigus therapy. J Invest Dermatol. 138(5). https://doi.org/10.1016/j.jid.2018.03.468. 2018.

  188. Galy A. Like angler fish, CAARs lure their prey. Mol Ther. 2016;24(8):1339–411. https://doi.org/10.1038/mt.2016.165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. June CH, Sadelain M. Chimeric antigen receptor therapy. N Engl J Med. 2018;379(1):64–73. https://doi.org/10.1056/NEJMra1706169.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Sadelain M, Brentjens R, Rivière I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23. https://doi.org/10.1016/j.coi.2009.02.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Ellebrecht CT, Bhoj VG, Nace A, Choi EJ, Mao X, Cho MJ, Di Zenzo G, Lanzavecchia A, Seykora JT, Cotsarelis G, Milone MC, Payne AS. Reengineering chimeric antigen receptor T cells for targeted therapy of autoimmune disease. Science. 2016;353(6295):179–84. https://doi.org/10.1126/science.aaf6756.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Jensen MC, Riddell SR. Designing chimeric antigen receptors to effectively and safely target tumors. Curr Opin Immunol. 2015;33:9–15. https://doi.org/10.1016/j.coi.2015.01.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Tasian SK, Gardner RA. CD19-redirected chimeric antigen receptor-modified T cells: a promising immunotherapy for children and adults with B-cell acute lymphoblastic leukemia (ALL). Therap Adv Hematol. 2015;6(5):228–41. https://doi.org/10.1177/2040620715588916.

    Article  CAS  Google Scholar 

  194. Duffy S. Novel cell therapy gets orphan drug status for mucosal pemphigus vulgaris. https://www.empr.com/home/news/drugs-in-the-pipeline/novel-cell-therapy-gets-orphan-drug-status-for-mucosal-pemphigus-vulgaris/. 2020.

  195. Rütter A, Luger TA. High-dose intravenous immunoglobulins: an approach to treat severe immune-mediated and autoimmune diseases of the skin. J Am Acad Dermatol. 2001;44(6):1010–24. https://doi.org/10.1067/mjd.2001.112325.

    Article  PubMed  Google Scholar 

  196. Jolles S, Sewell WAC, Misbah SA. Clinical uses of intravenous immunoglobulin. Clin Exp Immunol. 2005;142(1):1–11. https://doi.org/10.1111/j.1365-2249.2005.02834.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Administration TUFaD. Immune globulin intravenous (IGIV) indications. https://www.fda.gov/biologicsbloodvaccines/bloodbloodproducts/approvedproducts/licensedproductsblas/fractionatedplasmaproducts/ucm133691.htm. 2018.

  198. Orange JS, Hossny EM, Weiler CR, Ballow M, Berger M, Bonilla FA, Buckley R, Chinen J, El-Gamal Y, Mazer BD, Nelson RP Jr, Patel DD, Secord E, Sorensen RU, Wasserman RL, Cunningham-Rundles C. Use of intravenous immunoglobulin in human disease: a review of evidence by members of the Primary Immunodeficiency Committee of the American Academy of Allergy, Asthma and Immunology. J Allergy Clin Immunol. 2006;117(4 Suppl):S525–553. https://doi.org/10.1016/j.jaci.2006.01.015.

    Article  CAS  PubMed  Google Scholar 

  199. Bayry J, Misra N, Latry V, Prost F, Delignat S, Lacroix-Desmazes S, Kazatchkine MD, Kaveri SV. Mechanisms of action of intravenous immunoglobulin in autoimmune and inflammatory diseases. Transfus Clin Biol. 2003;10(3):165–9.

    Article  CAS  PubMed  Google Scholar 

  200. Guilpain P, Chanseaud Y, Tamby MC, Larroche C, Guillevin L, Kaveri SV, Kazatchkine MD, Mouthon L. Effets immunomodulateurs des immunoglobulines intraveineuses. La Presse Méd. 2004;33(17):1183–94. https://doi.org/10.1016/S0755-4982(04)98888-4.

    Article  Google Scholar 

  201. Sapir TAL, Blank M, Shoenfeld Y. Immunomodulatory effects of intravenous immunoglobulins as a treatment for autoimmune diseases, cancer, and recurrent pregnancy loss. Ann N Y Acad Sci. 2005;1051(1):743–78. https://doi.org/10.1196/annals.1361.118.

    Article  CAS  PubMed  Google Scholar 

  202. Ibanez C, Montoro-Ronsano JB. Intravenous immunoglobulin preparations and autoimmune disorders: mechanisms of action. Curr Pharm Biotechnol. 2003;4(4):239–47.

    Article  CAS  PubMed  Google Scholar 

  203. Tappeiner G, Steiner A. High-dosage intravenous gamma globulin: therapeutic failure in pemphigus and pemphigoid. J Am Acad Dermatol. 1989;20(4):684–5.

    Article  CAS  PubMed  Google Scholar 

  204. Engineer L, Bhol KC, Ahmed AR. Analysis of current data on the use of intravenous immunoglobulins in management of pemphigus vulgaris. J Am Acad Dermatol. 2000;43(6):1049–57. https://doi.org/10.1067/mjd.2000.108366.

    Article  CAS  PubMed  Google Scholar 

  205. Amagai M, Ikeda S, Shimizu H, Iizuka H, Hanada K, Aiba S, Kaneko F, Izaki S, Tamaki K, Ikezawa Z, Takigawa M, Seishima M, Tanaka T, Miyachi Y, Katayama I, Horiguchi Y, Miyagawa S, Furukawa F, Iwatsuki K, Hide M, Tokura Y, Furue M, Hashimoto T, Ihn H, Fujiwara S, Nishikawa T, Ogawa H, Kitajima Y, Hashimoto K, Pemphigus Study G. A randomized double-blind trial of intravenous immunoglobulin for pemphigus. J Am Acad Dermatol. 2009;60(4):595–603. https://doi.org/10.1016/j.jaad.2008.09.052.

  206. Gurcan HM, Jeph S, Ahmed AR. Intravenous immunoglobulin therapy in autoimmune mucocutaneous blistering diseases: a review of the evidence for its efficacy and safety. Am J Clin Dermatol. 2010;11(5):315–26. https://doi.org/10.2165/11533290-000000000-00000.

    Article  PubMed  Google Scholar 

  207. Seidling V, Hoffmann JH, Enk AH, Hadaschik EN. Analysis of high-dose intravenous immunoglobulin therapy in 16 patients with refractory autoimmune blistering skin disease: high efficacy and no serious adverse events. Acta Derm Venereol. 2013;93(3):346–9. https://doi.org/10.2340/00015555-1471.

    Article  CAS  PubMed  Google Scholar 

  208. Orbach H, Katz U, Sherer Y, Shoenfeld Y. Intravenous immunoglobulin: adverse effects and safe administration. Clin Rev Allergy Immunol. 2005;29(3):173–84.

    Article  CAS  PubMed  Google Scholar 

  209. Kazatchkine MD, Kaveri SV. Immunomodulation of autoimmune and inflammatory diseases with intravenous immune globulin. N Engl J Med. 2001;345(10):747–55. https://doi.org/10.1056/NEJMra993360.

    Article  CAS  PubMed  Google Scholar 

  210. Guo Y, Tian X, Wang X, Xiao Z. Adverse effects of immunoglobulin therapy. Front Immunol. 2018;9:1299–1299. https://doi.org/10.3389/fimmu.2018.01299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Monika Paroder-Belenitsky MDP, Pham HPMDM. Immunoadsorption. In: Shaz BH, Hillyer CD, Gil MR (eds) Transfusion medicine and hemostasis clinical and laboratory aspects. 3rd edn. Elsevier Science, Amsterdam, pp 497–500. https://doi.org/10.1016/C2015-0-05783-5

  212. Amber KT, Maglie R, Solimani F, Eming R, Hertl M. Targeted therapies for autoimmune bullous diseases: current status. Drugs. 2018;78(15):1527–48. https://doi.org/10.1007/s40265-018-0976-5.

    Article  PubMed  Google Scholar 

  213. Luftl M, Stauber A, Mainka A, Klingel R, Schuler G, Hertl M. Successful removal of pathogenic autoantibodies in pemphigus by immunoadsorption with a tryptophan-linked polyvinylalcohol adsorber. Br J Dermatol. 2003;149(3):598–605. https://doi.org/10.1046/j.1365-2133.2003.05513.x.

    Article  CAS  PubMed  Google Scholar 

  214. Meyersburg D, Schmidt E, Kasperkiewicz M, Zillikens D. Immunoadsorption in dermatology. Ther Apher Dial. 2012;16(4):311–20. https://doi.org/10.1111/j.1744-9987.2012.01075.x.

    Article  CAS  PubMed  Google Scholar 

  215. Schmidt E, Zillikens D. Immunoadsorption in dermatology. Arch Dermatol Res. 2010;302(4):241–53. https://doi.org/10.1007/s00403-009-1024-9.

    Article  PubMed  Google Scholar 

  216. Mersmann M, Dworschak J, Ebermann K, Komorowski L, Schlumberger W, Stöcker W, Zillikens D, Probst C, Schmidt E. Immunoadsorber for specific apheresis of autoantibodies in the treatment of bullous pemphigoid. Arch Dermatol Res. 2016;308(1):31–8. https://doi.org/10.1007/s00403-015-1606-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

No funding was received for the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emily M. Altman.

Ethics declarations

Conflicts of interest

EMA has no conflicts to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altman, E.M. Novel Therapies for Pemphigus Vulgaris. Am J Clin Dermatol 21, 765–782 (2020). https://doi.org/10.1007/s40257-020-00544-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40257-020-00544-w

Navigation