Skip to main content
Log in

Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

CeO2 with excellent oxygen storage-exchange capacity and NiO with excellent surface activity were used to construct a heterogeneous NiO-CeO2−δ hollow multi-shelled structure (HoMS) by spray drying. It turned out that as the proportion of CeO2 increases, the overpotential and Tafel slope of NiO-CeO2−δ HoMSs first decreased and then increased. This is mainly because the construction of the NiO-CeO2−δ HoMSs not only increases the specific surface area, but also introduces oxygen vacancy defects, thus improving the interface charge transfer capability of the materials and further improving the oxygen evolution reaction (OER) performance. However, the increase of the calcination temperature will induce the decay of the OER performance of NiO-CeO2−δ HoMSs, which is mainly due to the decrease of the specific surface area, the reduction of oxygen vacancy defects, and the weakening of interface charge transfer capability. Furthermore, a series of heterogeneous composite HoMSs, such as Ni/Co, Mo/Ni, Al/Ni and Fe/Ni oxides was successfully constructed by spray drying, which enriched the diversity of HoMSs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang Y., Yan D., Hankari S. E., Zou Y., Wang S., Adv. Sci., 2018, 5, 1800064.

    Article  Google Scholar 

  2. Li Q., Sun F., Zhang D., Sun H., Wang Q., Qi J., Wang H., Li Z., Hu Z., Wang B., Chem. Eng. J., 2023, 452, 139232.

    Article  CAS  Google Scholar 

  3. Bockris J. O. M., Veziroglu T. N., Int. J. Hydrogen Energ., 2007, 32, 1605.

    Article  CAS  Google Scholar 

  4. Dionigi F., Strasser P., Adv. Energy Mater., 2016, 6, 1600621.

    Article  Google Scholar 

  5. Gu H., Shi G., Chen H. C., Xie S., Li Y., Tong H., Yang C., Zhu C., Mefford J. T., Xia H., Chueh W. C., Chen H. M., Zhang L., ACS Energy Letters, 2020, 5, 3185.

    Article  CAS  Google Scholar 

  6. Sun Z., Liu L., Nan C., Li H., Sun G., Yang X., ACS Sustainable Chem. Eng., 2018, 6, 14257.

    Article  CAS  Google Scholar 

  7. Cai Z., Bu X., Wang P., Ho J. C., Yang J., Wang X., J. Mater. Chem. A, 2019, 7, 5069.

    Article  CAS  Google Scholar 

  8. Zhang X., Zhao Y., Zhao Y., Shi R., Waterhouse G. I., Zhang T., Adv. Energy Mater., 2019, 9, 1900881.

    Article  Google Scholar 

  9. Liu R., Wang Y., Liu D., Zou Y., Wang S., Adv. Mater., 2017, 29, 1701546.

    Article  Google Scholar 

  10. Walch S. P., Goddard III W. A., J. Am. Chem. Soc., 1978, 100, 1338.

    Article  CAS  Google Scholar 

  11. Feng J. X., Ye S. H., Xu H., Tong Y. X., Li G. R., Adv. Mater., 2016, 28, 4698.

    Article  CAS  PubMed  Google Scholar 

  12. Liu Y., Ma C., Zhang Q., Wang W., Pan P., Gu L., Xu D., Bao J., Dai Z., Adv. Mater., 2019, 31, 1900062.

    Article  Google Scholar 

  13. Qi J., Lai X., Wang J., Tang H., Ren H., Yang Y., Jin Q., Zhang L., Yu R., Ma G., Su Z., Zhao H., Wang D., Chem. Soc. Rev., 2015, 44, 6749.

    Article  CAS  PubMed  Google Scholar 

  14. Ren H., Yu R., Inorg. Chem. Front., 2019, 6, 2239.

    Article  CAS  Google Scholar 

  15. Wang L., Wan J., Wang J., Wang D., Small Struct., 2021, 2, 2000041.

    Article  CAS  Google Scholar 

  16. Fang L., Xie Y., Yang Y., Zhu B., Wang Y., Liu M., Zhao K., Zhao H., Zhang J., ACS Appl. Energ. Mater., 2019, 3, 309.

    Article  Google Scholar 

  17. Yu X., Wu J., Zhang A., Xue L., Wang Q., Tian X., Shan S., Zhong C. J., Zeng S., CrystEngComm, 2019, 21, 3626.

    Google Scholar 

  18. Zhang S., Fan Q., Gao H., Huang Y., Liu X., Li J., Xu X., Wang X., J. Mater. Chem. A, 2016, 4, 1422.

    Google Scholar 

  19. Qian X., Wu W., Niu Y., Yang J., Xu C., Wong K. Y., ACS Appl. Mater. Interfaces, 2019, 11, 43286.

    Google Scholar 

  20. Shan Z. W., Adesso G., Cabot A., Sherburne M. P., Syed Asif S. A., Warren O. L., Chrzan D. C., Minor A. M., Alivisatos A. P., Nat. Mater., 2008, 7, 947.

    Article  CAS  PubMed  Google Scholar 

  21. Qin F., Cui P., Hu L., Wang Z., Chen J., Xing X., Wang H., Yu R., Mater. Res. Bull., 2018, 99, 331.

    Article  CAS  Google Scholar 

  22. Liao Y., Li Y., Wang L., Zhao Y., Ma D., Wang B., Wan Y., Zhong S., Dalton T., 2017, 46, 1634.

    Article  CAS  Google Scholar 

  23. Zhang D., Zhang G., Zhang L., Chem. Eng. J., 2017, 330, 792.

    Article  CAS  Google Scholar 

  24. Wang H., Qi J., Yang N., Cui W., Wang J., Li Q., Zhang Q., Yu X., Gu L., Li J., Yu R., Huang K., Song S., Feng S., Wang D., Angew. Chem. Int. Ed., 2020, 59, 19691.

    Article  CAS  Google Scholar 

  25. Wang H., Mao D., Qi J., Zhang Q., Ma X., Song S., Gu L., Yu R., Wang D., Adv. Funct. Mater., 2019, 29, 1806588.

    Article  Google Scholar 

  26. Wei Y., Yang N., Huang K., Wan J., You F., Yu R., Feng S., Wang D., Adv. Mater., 2020, 32, 2002556.

    Article  CAS  Google Scholar 

  27. Wang J., Yang N., Tang H., Dong Z., Jin Q., Yang M., Kisailus D., Zhao H., Tang Z., Wang D., Angew. Chem. Int. Ed., 2013, 52, 6417.

    Article  CAS  Google Scholar 

  28. Xu J., Yao X., Wei W., Wang Z., Yu R., Mater. Res. Bull., 2017, 87, 214.

    Article  CAS  Google Scholar 

  29. Zhao D., Yang N., Wei Y., Jin Q., Wang Y., He H., Yang Y., Han B., Zhang S., Wang D., Nat. Commun., 2020, 11, 4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Li Y., Zhou W., Wang H., Xie L., Liang Y., Wei F., Idrobo J. C., Pennycook S. J., Dai H., Nat. Nanotechnol., 2012, 7, 394.

    Article  CAS  PubMed  Google Scholar 

  31. Bodhankar P. M., Sarawade P. B., Singh G., Vinu A., Dhawale D. S., J. Mater. Chem. A, 2021, 9, 3180.

    Article  CAS  Google Scholar 

  32. Tomboc G. M., Kim J., Wang Y., Son Y., Li J., Kim J. Y., Lee K., J. Mater. Chem. A, 2021, 9, 4528.

    Article  CAS  Google Scholar 

  33. Cai Z., Ji B., Yan K., Zhu Q., Polymers, 2019, 11, 2071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bichara L. C., Lanús H. E., Brandán S. A., J. Mol. Liq., 2014, 200, 448.

    Article  CAS  Google Scholar 

  35. Solsona B., Concepción P., Hernández S., Demicol B., Nieto J. M. L., Catal. Today, 2012, 180, 51.

    Article  CAS  Google Scholar 

  36. Min P., Zhang S., Xu Y., Li R., Appl. Surf. Sci., 2018, 448, 435.

    Article  CAS  Google Scholar 

  37. Shi Y., Fu J., Hui K., Liu J., Gao C., Chang S., Chen Y., Gao X., Gao T., Xu L., Wei Q., Tang M., Microstructures, 2021, 1, 2021005.

    Google Scholar 

  38. Zhong Y., Ping D., Song X., Yin F., J. Alloy. Comp., 476, 113.

  39. Manibalan G., Murugadoss G., Thangamuthu R., Ragupathy P., Kumar M. R., Kumar R. M., Jayavel R., Inorg. Chem, 2019, 58, 13843.

    Article  CAS  PubMed  Google Scholar 

  40. Yan Y., Ran Z., Zeng T., Wen X., Xu H., Li R., Zhao C., Shu C., Small, 2022, 18, 2106707.

    Article  CAS  Google Scholar 

  41. Vandevyvere T., Sabbea M., Mendes P., Thybaut J., Lauwaert J., Green Carbon, 2023, 1, 170.

    Article  Google Scholar 

  42. Wu C., Zhang Y., Xiao W., Chin. J. Rare Met., 2023, 47, 1747.

    Google Scholar 

  43. You N., Cao S., Huang M., Fan X., Shi K., Huang H., Chen Z., Yang Z., Zhang W., Nano Mater. Sci., 2023, 5, 278.

    Article  CAS  Google Scholar 

  44. Xu X., Zhang Y., Miao X., Chin. J. Rare Met., 2022, 46, 1449.

    CAS  Google Scholar 

  45. Mu Y., Pei X., Zhao Y., Dong X., Kou Z., Cui M., Meng C., Zhang Y., Nano Mater. Sci., 2023, 5, 351.

    Article  CAS  Google Scholar 

  46. Wang H., Zhang Q., Sun F., Qi J., Zhang D., Sun H., Li Z., Wang Q., Wang B., J. Alloy. Comp., 2023, 933, 167700.

    Article  CAS  Google Scholar 

  47. Liang F., Wang X., Hu B., Cheng M., Mao J., Zhou W., Chin. J. Rare Met., 2023, 47, 124.

    Google Scholar 

  48. Kong J., Zheng J., Wu H., Wan C., Ye M., Xu L., Chin. J. Rare Met., 2023, 47, 797.

    Google Scholar 

  49. Zhang B., Zhang S., Deng L., Li L., Zhang S., Chin. J. Rare Met., 2022, 46, 1439.

    Google Scholar 

  50. Zhang X., You R., Li D., Cao T., Huang W., ACS Appl. Mater. Interfaces, 2017, 9, 35897.

    Article  CAS  PubMed  Google Scholar 

  51. Li L., Li R., Xu J., Liu Y., Lu L., Chin. J. Rare Met., 2023, 47, 1726.

    Google Scholar 

  52. Gao Y., Song T., Guo X., Zhang Y., Yang Y., Green Carbon, 2023, 1, 105.

    Article  Google Scholar 

  53. Yan Y., Ma Z., Sun J., Bu M., Huo Y., Wang Z., Li Y., Hu N., Nano Mater. Sci., 2021, 3, 268.

    Article  CAS  Google Scholar 

  54. Wang F., Yang S., Han S., Sun P., Liu W., Lu Q., Cao W., Prog. Nat. Sci. Mater. Int., 2022, 32, 561.

    Article  CAS  Google Scholar 

  55. Wang Z., Wei Y., Qi J., Wan J., Wang Z., Yu R., Wang D., Adv. Funct. Mater., 2024, 34, 2316547.

    Article  Google Scholar 

  56. Wang Q., Li C., Sun P., Liu F., Lu G., Li X., Mater. Res. Express, 2019, 6, 1150e6.

    Article  Google Scholar 

  57. Yang W., Zhu G., Wang J., Feng S., Yang J., Su P., Fu W., Yang H., Catal. Lett., 2019, 149, 1680.

    Article  CAS  Google Scholar 

  58. Saikia H., Hazarika K. K., Chutia B., Choudhury B., Bharali P., ChemistrySelect, 2017, 2, 3369.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21931012, 51932001, 52372170, 51972306), the Natural Science Foundation of Hebei Province, China (Nos. E2022208023, E2021208036), and the Science and the Technology Project of Hebei Education Department, China (No. QN2023048).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Qi, Ranbo Yu or Dan Wang.

Ethics declarations

WANG Dan is an editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Supporting Information

40242_2024_4048_MOESM1_ESM.pdf

Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-Shelled Structure for Boosting Oxygen Evolution Reaction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Gong, G., Sun, G. et al. Regulating Oxygen Vacancy Defects in Heterogeneous NiO-CeO2−δ Hollow Multi-shelled Structure for Boosting Oxygen Evolution Reaction. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4048-y

Keywords

Navigation