Skip to main content
Log in

Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Hydrogen energy stands out as one of the most promising alternative energy sources due to its cleanliness and renewability. Electrocatalytic water splitting offers a sustainable pathway for hydrogen production. However, the kinetic rate of the hydrogen evolution reaction (HER) is sluggish, emphasizing the critical need for stable and highly active electrocatalysts to facilitate HER and enhance reaction efficiency. Transition metal-based catalysts have garnered attention for their favorable catalytic activity in electrochemical hydrogen evolution in alkaline electrolytes. In this investigation, flower-like nanorods of MoS2 were directly synthesized in situ on a nickel foam substrate, followed by the formation of MoP/MoS2-nickel foam (NF) heterostructures through high-temperature phosphating in a tube furnace environment. The findings reveal that MoP/MoS2-NF-450 exhibits outstanding electrocatalytic performance in an alkaline milieu, demonstrating a low overpotential (90 mV) and remarkable durability at a current density of 10 mA/cm2. Comprehensive analysis indicates that the introduction of phosphorus (P) atoms enhances the synergistic effect with MoS2, while the distinctive flower-like nanorod structure of MoS2 exposes more active sites. Moreover, the interface between the MoP/MoS2 heterostructure and NF facilitates electron transfer during hydrogen evolution, thereby enhancing electrocatalytic performance. The design and synthesis of such catalysts offer a valuable approach for the development of high-performance hydrogen evolution electrocatalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang J. J., Li M. Y., Li X., Bao W. W., Jin C. Q., Feng X. H., Liu G., Yang C. M., Zhang N. N., Nanomaterials, 2022, 12, 1227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Li X., Liu Y., Zhang J. J., Yan B., Jin C., Dou J., Li M., Feng X., Liu G., Chem. Mater., 2022, 34, 1385.

    Article  CAS  Google Scholar 

  3. Lao J., Li D., Jiang C., Luo R., Peng H., Qi R., Lin H., Huang R., Waterhouse G. I. N., Luo C., Int. J. Hydrogen Energy, 2020, 45, 28616.

    Article  CAS  Google Scholar 

  4. Wang J., Zhang Z., Song H., Zhang B., Liu J., Shai X., Miao L., Adv. Funct. Mater., 2021, 31, 2008578.

    Article  CAS  Google Scholar 

  5. Sun M., Zhang Q., Chen Q., Hou X., Peng W., Li Y., Zhang F., Xia Q., Fan X., Catalysts, 2022, 12, 594.

    Article  CAS  Google Scholar 

  6. Ai T., Wang H., Bao W., Feng L., Zou X., Wei X., Ding L., Deng Z., Rao B., Chem. Eng. J., 2022, 450, 138358.

    Article  CAS  Google Scholar 

  7. Du X., Ma G., Zhang X., Dalton Trans., 2019, 48, 10116.

    Article  CAS  PubMed  Google Scholar 

  8. Fei B., Chen Z., Liu J., Xu H., Yan X., Qing H., Chen M., Wu R., Adv. Energy Mater., 2020, 10, 2001963.

    Article  CAS  Google Scholar 

  9. Zhao K., Pang W. Y., Jiang S. Y., Liu P. R., Cui D. D., An X. F., Tian B. J., Gao C., Zhang P., Tian M., Fu D., Zhao H. J., Nano Res., 2023, 16, 4812.

    Article  CAS  Google Scholar 

  10. Pang W. Y., Jiang S. Y., Sun Y. L., Zhong Y. L., Zhang P., Zhou J. Y., Fu D., Zhao K., Zhao H. J., Mater. Res. Bull., 2023, 161, 112145.

    Article  CAS  Google Scholar 

  11. Meng C., Wang Z. M., Zhang L. J., Ji X. Y., Yu R. B., ACS Appl. Inorg. Chem., 2022, 61, 9832.

    Article  CAS  Google Scholar 

  12. He Y. L., Zhang L. J., Wei Y. Z., Zhang X., Wang Z. M., Yu R. B., Small Methods., 2022, 6, 2101567.

    Article  CAS  Google Scholar 

  13. Wang Z. M., Meng C., Wang J., Song Z. F., Yu R. B., Eur. J. Inorg. Chem., 2023, 26, e202300014.

    Article  CAS  Google Scholar 

  14. Laursen A. B., Kegnæs S., Dahl S., Chorkendorff I., Energy Environ. Sci., 2012, 5, 5577.

    Article  CAS  Google Scholar 

  15. Zhu Y. A., Dai W., Zhong X., Lu T., Pan Y., J. Colloid Interface Sci., 2021, 602, 55.

    Article  CAS  PubMed  Google Scholar 

  16. Li A., Zhu W., Li C., Wang T., Gong J., Chem. Soc. Rev., 2019, 48, 1874.

    Article  CAS  PubMed  Google Scholar 

  17. Xie Y. H., Chang C. F., Luo F., Yang Z. H., ACS Appl., Mater., Interfaces, 2023, 15, 20081.

    Article  CAS  PubMed  Google Scholar 

  18. Wu G., Chen W., Zheng X., He D., Luo Y., Wang X., Yang J., Wu Y., Yan W., Zhuang Z., Nano Energy, 2017, 38, 167.

    Article  CAS  Google Scholar 

  19. Zhang X., Zhou F., Zhang S., Liang Y., Wang R., Adv. Sci., 2019, 6, 1900.

    CAS  Google Scholar 

  20. Benson E. E., Zhang H., Schuman S. A., Nanayakkara S. U., Bronstein N. D., Ferrere S., Blackburn J. L., Miller E. M., J. Am. Chem. Soc., 2018, 140, 441.

    Article  CAS  PubMed  Google Scholar 

  21. Hansen L. P., Ramasse Q. M., Kisielowski C., Brorson M., Johnson E., Topsøe H., Helveg S., Angew. Chem. Int. Ed., 2011, 50, 10153.

    Article  CAS  Google Scholar 

  22. Xie J., Zhang H., Li S., Wang R., Sun X., Zhou M., Zhou J., Lou X. W., Xie Y., Adv Mater., 2013, 25, 5807.

    Article  CAS  PubMed  Google Scholar 

  23. Duan J., Chen S., Ortíz-Ledón C. A., Jaroniec M., Qiao S. Z., Angew. Chem. Int. Ed., 2020, 59, 8181.

    Article  CAS  Google Scholar 

  24. Wu W., Niu C., Wei C., Jia Y., Li C., Xu Q., Angew. Chem. Int. Ed., 2019, 58, 2029.

    Article  CAS  Google Scholar 

  25. Kibsgaard J., Chen Z., Reinecke B. N., Jaramillo T. F., Nat. Mater., 2012, 11, 963.

    Article  CAS  PubMed  Google Scholar 

  26. Xu J., Cui J., Guo C., Zhao Z., Jiang R., Xu S., Zhuang Z., Huang Y., Wang L., Li, Y., Angew. Chem. Int. Ed., 2016, 55, 6502.

    Article  CAS  Google Scholar 

  27. Ouyang C., Feng S., Huo J., Wang S., Green Energy Environ., 2017, 2, 134.

    Article  Google Scholar 

  28. Chi J. Q., Chai Y. M., Shang X., Dong B., Liu C. G., Zhang W., Jin Z., J. Mater. Chem. A, 2018, 6, 24783.

    Article  CAS  Google Scholar 

  29. Cabán-Acevedo M., Stone M. L., Schmidt J. R., Thomas J. G., Ding Q., Chang H. C., Tsai M. L., He J. H., Jin S., Nat. Mater., 2015, 14, 1245.

    Article  PubMed  Google Scholar 

  30. Wu A., Tian C., Yan H., Jiao Y., Yan Q., Yang G., Fu H., Nanoscale, 2016, 8, 11052.

    Article  CAS  PubMed  Google Scholar 

  31. Xu Y., Wang R., Wang J., Li J., Jiao T., Liu Z., Chem. Eng. J., 2021, 417, 129233.

    Article  CAS  Google Scholar 

  32. Kibsgaard J., Jaramillo T. F., Angew. Chem. Int. Ed., 2014, 53, 14433.

    Article  CAS  Google Scholar 

  33. Ye R., del Angel-Vicente P., Liu Y., Arellano-Jimenez M. J., Peng Z., Wang T., Li Y., Yakobson B. I., Wei S. H., Yacaman M. J., Adv. Mater., 2016, 28, 1427.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao G., Rui K., Dou S. X., Sun W., Adv. Funct. Mater., 2018, 28, 1803291.

    Article  Google Scholar 

  35. Sivanantham A., Ganesan P., Shanmugam S., Adv. Funct. Mater., 2016, 26, 4661.

    Article  CAS  Google Scholar 

  36. Yuan C., Yang L., Hou L., Shen L., Zhang X., Lou X. W., Energy Environ. Sci., 2012, 5, 7883.

    Article  CAS  Google Scholar 

  37. Wu Z., Wang J., Xia K., Lei W., Liu X., Wang D., J. Mater. Chem. A, 2018, 6, 616.

    Article  CAS  Google Scholar 

  38. Zhu H., Zhang J., Yanzhang R., Du M., Wang Q., Gao G., Wu J., Wu G., Zhang M., Liu B., Adv. Mater., 2015, 27, 4752.

    Article  CAS  PubMed  Google Scholar 

  39. Li F., Zhang L., Li J., Lin X., Li X., Fang Y., Huang J., Li W., Tian M., Jin J., J. Power Sources, 2015, 292, 15.

    Article  CAS  Google Scholar 

  40. Zhou H., Xia X., Lv P., Zhang J., Hou X., Zhao M., Ao K., Wang D., Lu K., Qiao H., ChemSusChem, 2018, 11, 4060.

    Article  CAS  PubMed  Google Scholar 

  41. Yang J., Zhang F., Wang X., He D., Wu G., Yang Q., Hong X., Wu Y., Li Y., Angew. Chem. Int. Ed., 2016, 55, 12854.

    Article  CAS  Google Scholar 

  42. Pu Z., Wei S., Chen Z., Mu S., Appl. Catal. B, 2016, 196, 193.

    Article  CAS  Google Scholar 

  43. Zhang P., Xiang H., Tao L., Dong H., Zhou Y., Hu T. S., Chen X., Liu S., Wang S., Garaj S., Nano Energy, 2019, 57, 535.

    Article  CAS  Google Scholar 

  44. Schmidt T. J., Ross P. N., Markovic N. M., J. Electroanal. Chem., 2002, 524/525, 252.

    Article  Google Scholar 

  45. Jaramillo T. F., Jørgensen K. P., Bonde J., Nielsen J. H., Horch S., Chorkendorff I., Science, 2007, 317, 100.

    Article  CAS  PubMed  Google Scholar 

  46. Agbossou-Niedercorn F., Paul J. F., Eur. J. Inorg. Chem., 2006, 2006, 4338.

    Article  Google Scholar 

  47. Nørskov J. K., Bligaard T., Logadottir A., Kitchin J. R., Chen J. G., Pandelov S., Stimming U., J. Electrochem. Soc., 2005, 152, J23

    Article  Google Scholar 

  48. Yang L., Zhou W., Hou D., Zhou K., Li G., Tang. Z., Li L., Chen S., Nanoscale, 2015, 5203.

  49. Wang D. Y., Gong M., Chou H. L., Pan C. J., Chen H. A., Wu Y., Lin M. C., Guan M., Yang J., Chen C. W., J. Am. Chem. Soc., 2015, 137, 1587.

    Article  CAS  PubMed  Google Scholar 

  50. Yang S., Wang Y., Zhang, H., Zhang Y., Liu L., Fang L., Yang X., Gu X., Wang Y., J. Catal., 2019, 371, 20.

    Article  CAS  Google Scholar 

  51. Zhou Q., Feng J., Peng X., Zhong L., Sun R., J. Energy Chem., 2020, 45, 45.

    Article  Google Scholar 

  52. Yang Y., Yao H., Yu Z., Islam S. M., He H., Yuan M., Yue Y., Xu K., Hao W., Sun G., J. Am. Chem. Soc., 2019, 141, 10417.

    Article  CAS  PubMed  Google Scholar 

  53. Lv J. J., Zhao J., Fang H., Jiang L. P., Li L. L., Ma J., Zhu J. J., Small, 2017, 13, 1700264.

    Article  Google Scholar 

  54. Wu Y., Liu Y., Li G. D., Zou X., Lian X., Wang D., Sun L., Asefa T., Zou X., Nano Energy, 2017, 35, 161.

    Article  CAS  Google Scholar 

  55. Wu Y., Li G. D., Liu Y., Yang L., Lian X., Asefa T., Zou X., Adv. Funct. Mater., 2016, 26, 4839.

    Article  CAS  Google Scholar 

  56. Fang W., Liu D., Lu Q., Sun X., Asiri A. M., Electrochem. Commun., 2016, 63, 60.

    Article  CAS  Google Scholar 

  57. Luo P., Zhang H., Liu L., Zhang Y., Deng J., Xu C., Hu N., Wang Y., ACS Appl. Mater. Interfaces, 2017, 9, 2500.

    Article  CAS  PubMed  Google Scholar 

  58. Zhou Z., Wei L., Wang Y., Karahan H. E., Chen Z., Lei Y., Chen X., Zhai S., Liao X., Chen Y., J. Mater. Chem. A, 2017, 5, 20390.

    Article  CAS  Google Scholar 

  59. Liu J., Zhu D., Ling T., Vasileff A., Qiao S. Z., Nano Energy, 2017, 40, 264.

    Article  CAS  Google Scholar 

  60. Ansovini D., Jun Lee C. J., Chua C. S., Ong L. T., Tan H. R., Webb W. R., Raja R., Lim Y. F., J. Mater. Chem. A, 2016, 4, 9744.

    Article  CAS  Google Scholar 

  61. You B., Liu X., Jiang N., Sun Y., J. Am. Chem. Soc., 2016, 138, 13639

    Article  CAS  PubMed  Google Scholar 

  62. Xu R., Wu R., Shi Y., Zhang J., Zhang B., Nano Energy, 2016, 24, 103.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 61973223, 51972306), the Liaoning Educational Department Foundation, China (Nos. LJKMZ20220762, JYTMS20231510), the Natural Science Foundation of Liaoning Province, China (Nos. 2023-MS-235, 2023-MSLH-270), and the Key Project in Science & Technology of Shenyang University of Chemical Technology, China (No. 2023DB005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoguang San or Quan Jin.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, D., Ran, S., Gao, L. et al. Construction of MoP/MoS2 Core-shell Structure Electrocatalyst for Boosting Hydrogen Evolution Reaction. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4040-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4040-6

Keywords

Navigation