Skip to main content
Log in

Outer-surface Covering of Nanochannels with Hydrogel for Highly Sensitive and Specific Cr(VI) Detection Through Analyte-caused Charge Change in Hydrogel

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Nanochannels have made great progress and are a promising platform for detecting a series of targets. However, most nanochannels are modified on the inner wall, while ignoring the outer surface. Here, we modified the outer surface of nanochannels with hydrogel. Different from other reported outer-surface modification methods, we directly cover nanochannels with hydrogel to form heterogeneous membrane. The selected hydrogel hardly adsorbs other ions and shows specific adsorption for Cr(VI). The adsorption sites in hydrogel are homogeneous, and Cr(VI) adsorption onto hydrogel is endothermic and spontaneous. The charge in hydrogel changes after Cr(VI) adsorption, and the resulting current changes can be used for the detection of Cr(VI) with the detection limit of 10−11 mol/L. Our platform is expected to be used for Cr(VI) detection in living organisms, especially within cells. This work provides a new approach for outer-surface modification of nanochannels and offers a new choice for nanochannel detection platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gu C., Hosono N., Zheng J. J., Sato Y., Kusaka S., Sakaki S., Kitagawa S., Science, 2019, 363 (6425), 387

    Article  CAS  PubMed  Google Scholar 

  2. Geng J., Kim K., Zhang J. F., Escalada A., Tunuguntla R., Comolli L. R., Allen F. I., Shnyrova A. V., Cho K. R., Munoz D., Wang Y. M., Grigoropoulos C. P., Ajo-Franklin C. M., Frolov V. A., Noy A., Nature, 2014, 514 (7524), 612

    Article  CAS  PubMed  Google Scholar 

  3. Xiong T. Y., Li C. W., He X. L., Xie B. Y., Zong J. W., Jiang Y. A., Ma W. J., Wu F., Fei J. J., Yu P., Mao L. Q., Science, 2023, 379 (6628), 156

    Article  CAS  PubMed  Google Scholar 

  4. Siria A., Poncharal P., Biance A. L., Fulcrand R., Blase X., Purcell S. T., Bocquet L., Nature, 2013, 494 (7438), 455

    Article  CAS  PubMed  Google Scholar 

  5. Liu Q., Xiao K., Wen L. P., Lu H., Liu Y. H., Kong X. Y., Xie G. H., Zhang Z., Bo Z. S., Jiang L., J. Am. Chem. Soc., 2015, 137 (37), 11976

    Article  CAS  PubMed  Google Scholar 

  6. Liu Q., Wen L. P., Xiao K., Lu H., Zhang Z., Xie G. H., Kong X. Y., Bo Z. S., Jiang L., Adv. Mater., 2016, 28 (16), 3181

    Article  CAS  PubMed  Google Scholar 

  7. Shang X. M., Xie G. H., Kong X. Y., Zhang Z., Zhang Y. Q., Tian W., Wen L. P., Jiang L., Adv. Mater., 2017, 29 (3), 1603884

    Article  Google Scholar 

  8. Li P., Xie G. H., Liu P., Kong X. Y., Song Y. L., Wen L. P., Jiang L., J. Am. Chem. Soc., 2018, 140 (47), 16048

    Article  CAS  PubMed  Google Scholar 

  9. Zhang X. J., Lin M. H., Dai Y., Xia F., Anal. Chem., 2023, 95 (28), 10465

    Article  CAS  PubMed  Google Scholar 

  10. Zhang X. J., Dai Y., Sun J. L., Shen J. L., Lin M. H., Xia F., Anal. Chem., 2024, 96 (6), 2277

    Article  CAS  PubMed  Google Scholar 

  11. Gao P. C., Ma Q., Liu R., Lou X. D., Huang Y., Zhang B. C., Xia F., Chem. Res. Chinese Universities, 2022, 38 (4), 957

    Article  CAS  Google Scholar 

  12. Xue L., Yamazaki H., Ren R., Wanunu M., Ivanov A. P., Edel J. B., Nat. Rev. Mater., 2020, 5 (12), 931

    Article  CAS  Google Scholar 

  13. Dai Y., Zhang Y. W., Ma Q., Lin M. H., Zhang X. J., Xia F., Anal. Chem., 2022, 94 (50), 17343

    Article  CAS  PubMed  Google Scholar 

  14. Ma Q., Li Y., Wang R. S., Xu H. Q., Du Q. J., Gao P. C., Xia F., Nat. Commun., 2021, 12, 1573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gao P. C., Ma Q., Ding D. F., Wang D. G., Lou X. D., Zhai T. Y., Xia F., Nat. Commun., 2018, 9, 4557

    Article  PubMed  PubMed Central  Google Scholar 

  16. Liu T. L., Wu X. Q., Xu H. Q., Ma Q., Du Q. J., Yuan Q., Gao P. C., Xia F., Anal. Chem., 2021, 93 (38), 13054

    Article  CAS  PubMed  Google Scholar 

  17. Wu X. Q., Li Y., Xu H. Q., Chen Y. J., Mao H. W., Ma Q., Du Q. J., Gao P. C., Xia F., Anal. Chem., 2021, 93 (40), 13711

    Article  CAS  PubMed  Google Scholar 

  18. Ma Q., Wang R. S., Gao P. C., Dai Y., Xia F., Anal. Chem., 2022, 94 (47), 16411

    Article  CAS  PubMed  Google Scholar 

  19. Hu J. J., Jiang W. L., Qiao Y. J., Ma Q., Du Q. J., Jiang J. H., Lou X. D., Xia F., ACS Nano, 2023, 17 (12), 11935

    Article  CAS  PubMed  Google Scholar 

  20. Qiao Y. J., Hu J. J., Hu Y. X., Duan C., Jiang W. L., Ma Q., Hong Y. N., Huang W. H., Xia F., Lou X. D., Angew. Chem. Int. Ed., 2023, 62 (43), e202309671

    Article  CAS  Google Scholar 

  21. Zhang X. J., Dou H. M., Chen X. R., Lin M. H., Dai Y., Xia F., Anal. Chem., 2023, 95 (47), 17153

    Article  CAS  PubMed  Google Scholar 

  22. Culver H. R., Clegg J. R., Peppas N. A., Acc. Chem. Res., 2017, 50 (2), 170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Z., He L., Zhu C. C., Qian Y. C., Wen L. P., Jiang L., Nat. Commun., 2020, 11, 875

    Article  PubMed  PubMed Central  Google Scholar 

  24. Kishore P. V. N., Shankar M. S., Satyanarayana M., Sens. Actuator B: Chem., 2017, 243, 626

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22090050), the National Key R&D Program of China (No. 2021YFA1200403) and the Joint National Natural Science Foundation of China-Israel Science Foundation (NSFC-ISF) Research Grant Program (No. 22161142020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojin Zhang or Fan Xia.

Ethics declarations

XIA Fan is a youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or the decision to publish this article. The authors declare no conflicts of interest.

Electronic Supplementary Material

40242_2024_4029_MOESM1_ESM.pdf

Outer-surface Covering of Nanochannels with Hydrogel for Highly Sensitive and Specific Cr(VI) Detection Through Analyte-caused Charge Change in Hydrogel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Sun, X., Dai, Y. et al. Outer-surface Covering of Nanochannels with Hydrogel for Highly Sensitive and Specific Cr(VI) Detection Through Analyte-caused Charge Change in Hydrogel. Chem. Res. Chin. Univ. 40, 326–332 (2024). https://doi.org/10.1007/s40242-024-4029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-024-4029-1

Keywords

Navigation