Skip to main content
Log in

Prussian Blue Analogue Derived N-Doped Graphitic Carbon Wrapped Iron-Cobalt Nanoparticles as Recyclable Heterogeneous Catalysts for Friedel-Crafts Acylation

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The rational design of efficient heterogeneous catalysts for Friedel-Crafts acylation reactions is highly desirable for meeting the need for the industrial production of various aromatic ketone compounds and biomass-derived chemicals. Herein, we reported that graphitic carbon wrapped FeCo bimetallic nanoparticles confined in nitrogen-doped carbon nanotubes, which were prepared by pyrolysis of FeCo-based Prussian blue analogue and melamine via a two-stage programmed heating procedure, exhibited excellent catalytic activity and recyclability for the acylation of aromatic compounds with acyl chlorides. The oxidized bimetallic species embedded in the external graphitic carbon shell should be the main active sites for the acylation reaction. The graphitic carbon shell and the carbon nanotube could provide effective protection on the active metal species against leaching through multiple interactions, leading to the formation of a highly active and durable heterogeneous catalyst for the acylation reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sartori G., Maggi R., Chemical Reviews, 2011, 111, PR181.

    Article  PubMed  Google Scholar 

  2. Chalotra N., Sultan S., Shah B. A., Asian J. Org. Chem., 2020, 9, 863.

    Article  CAS  Google Scholar 

  3. Alalq I., Nguyen-Phu H., Crossley S., J. Catal., 2023, 426, 222.

    Article  CAS  Google Scholar 

  4. Bejblová M., Procházková D., Cejka J., ChemSusChem, 2009, 2, 486.

    Article  PubMed  Google Scholar 

  5. Gao G. F., Zhao Q., Yang C., Jiang T. S., Dalton Trans., 2021, 50, 5871.

    Article  CAS  PubMed  Google Scholar 

  6. Hu W. H., Liu M. N., Luo Q. X., Zhang J. B., Chen H. Y., Xu L., Sun M., Ma X. X., Hao Q. Q., Chem. Eng. J., 2023, 466, 11.

    Google Scholar 

  7. Tiwari M. S., Yadav G. D., Chem. Eng. J., 2015, 266, 64.

    Article  CAS  Google Scholar 

  8. Lu H. Y., Xie J., Wu X. J., Ma Q. L., Cheng J. N., Li Z. L., Hu D. C., Appl. Catal. A: Gen., 2022, 648, 7.

    Article  Google Scholar 

  9. Deka R. C., Deka A., Deka P., Saikia S., Baruah J., Sarma P. J., J. Nanosci. Nanotechnol., 2020, 20, 5153.

    Article  PubMed  Google Scholar 

  10. Ammar M., Jiang S., Ji S. F., J. Solid State Chem., 2016, 233, 303.

    Article  CAS  Google Scholar 

  11. Schiaroli N., Allegri A., Eberle M., Billi S., Guerrini A., Albonetti S., Vaccari A., Tabanelli T., Lucarelli C., ChemSusChem, 2023, 16, 11.

    Article  Google Scholar 

  12. Ly I., Layan E., Picheau E., Chanut N., Nallet F., Bentaleb A., Dourges M. A., Pellenq R. J., Hillard E. A., ACS Appl. Mater. Interfaces, 2022, 14, 13305.

    Article  CAS  PubMed  Google Scholar 

  13. Mu M. M., Chen L. G., Liu Y. L., Fang W. W., Li Y., A. RSC Adv., 2014, 4, 36951.

    Article  CAS  Google Scholar 

  14. Li S., Jin C. H., Feng N. D., Deng F., Xiao L. P., Fan J., Catal. Commun., 2019, 123, 54.

    Article  CAS  Google Scholar 

  15. Reddy K. R., Venkanna D., Kantam M. L., Bhargava S. K., Srinivasu P., Ind. Eng. Chem. Res., 2015, 54, 7005.

    Article  Google Scholar 

  16. Fang Z., He W., Tu T., Lv N. N., Qiu C. H., Li X., Zhu N., Wan L., Guo K., Chem. Eng. J., 2018, 331, 443.

    Article  CAS  Google Scholar 

  17. Chen Y. Q., Yang Y., Zhou Z., Luo W., Liu J. H., Wang F., New J. Chem., 2020, 44, 10492.

    Article  CAS  Google Scholar 

  18. Vardon A., Layan E., Louërat F., Nallet F., Bentaleb A., Dourges M. A., Toupance T., Laurichesse E., Sanchez C., Parizel N., Sidhoum C., Baaziz W., Ersen O., Pigot T., Backov R., Chem. Mat., 2023, 35, 6502.

    Article  CAS  Google Scholar 

  19. Zhang H., Song X. J., Zhao C., Hu D. W., Zhang W. X., Jia M. J., ACS Appl. Nano Mater., 2020, 3, 6664.

    Article  CAS  Google Scholar 

  20. Zhang H., Song X. J., Sun H., Lei Z. Y., Bao S. X., Zhao C., Hu D. A. W., Zhang W. X., Liu J. Y., Jia M. J., Catal. Sci. Technol., 2021, 11, 7943.

    Article  CAS  Google Scholar 

  21. Zhao C., Zhang H., Lei Z. Y., Miao S. S., Sun H. L., Sun Y. T., Zhang W. X., Jia M. J., Catal. Today, 2022, 402, 220.

    Article  CAS  Google Scholar 

  22. Yang Y., Lun Z. Y., Xia G. L., Zheng F. C., He M. N., Chen Q. W., Energy Environ. Sci., 2015, 8, 3563.

    Article  CAS  Google Scholar 

  23. Su J. W., Yang Y., Xia G. L., Chen J. T., Jiang P., Chen Q. W., Nat. Commun., 2017, 8, 10.

    Article  Google Scholar 

  24. Yang L. J., Feng S. Z., Xu G. C., Wei B., Zhang L., ACS Sustain. Chem. Eng., 2019, 7, 5462.

    Article  CAS  Google Scholar 

  25. Chen S. M., Ma L. T., Wu S. L., Wang S. Y., Li Z. B., Emmanuel A. A., Huqe M. R., Zhi C. Y., Zapien J. A., Adv. Funct. Mater., 2020, 30, 9.

    CAS  Google Scholar 

  26. Wang Z., Fang Y., Yang Y., Qiu B., Li H. P., Chem. Eng. J., 2023, 454, 15.

    Google Scholar 

  27. Goda E. S., Lee S., Sohail M., Yoon K. R., J. Energy Chem., 2020, 50, 206.

    Article  Google Scholar 

  28. Niu H. J., Chen Y. P., Sun R. M., Wang A. J., Mei L. P., Zhang L., Feng J. J., J. Power Sources, 2020, 480, 11.

    Article  Google Scholar 

  29. Chen D., Li G. F., Chen X., Li C. J., Zhang Y. C., Hu J., Yu J. H., Yu L. Y., Dong L. F., J. Alloy. Compd., 2022, 910, 10.

    Google Scholar 

  30. Wang Z., Ang J. M., Zhang B. W., Zhang Y. F., Ma X. Y. D., Yan T., Liu J., Che B. Y., Huang Y. Z., Lu X. H., Appl. Catal. B: Environ., 2019, 254, 26.

    Article  CAS  Google Scholar 

  31. Xie D. Y., Yu D. S., Hao Y. A., Han S. L., Li G. H., Wu X. L., Hu F., Li L. L., Chen H. Y., Liao Y. F., Peng S. J., Small, 2021, 17, 11.

    Google Scholar 

  32. Xu X. Q., Xie J. H., Liu B., Wang R. Y., Liu M. Y., Zhang J., Liu J., Cai Z., Zou J. L., Appl. Catal. B: Environ., 2022, 316, 12.

    Google Scholar 

  33. Feng Y., Han H., Kim K. M., Dutta S., Song T., J. Catal., 2019, 369, 168.

    Article  CAS  Google Scholar 

  34. Hu L., Zhang R. R., Wei L. Z., Zhang F. P., Chen Q. W., Nanoscale, 2015, 7, 450.

    Article  CAS  PubMed  Google Scholar 

  35. Uemura T., Kitagawa S., J. Am. Chem. Soc., 2003, 125, 7814.

    Article  CAS  PubMed  Google Scholar 

  36. Ge Y. C., Dong P., Craig S. R., Ajayan P. M., Ye M. X., Shen J. F., Adv. Energy Mater., 2018, 8, 9.

    Google Scholar 

  37. Zhu Z. G., Xu Q. Q., Ni Z. T., Luo K. F., Liu Y. Y., Yuan D. S., Chem. Eng., 2021, 9, 13491.

    CAS  Google Scholar 

  38. Yang W. X., Liu X. J., Yue X. Y., Jia J. B., Guo S. J., J. Am. Chem. Soc., 2015, 137, 1436.

    Article  CAS  PubMed  Google Scholar 

  39. Wu S. K., Shen X. P., Zhu G. X., Zhou E., Ji Z. Y., Ma L. B., Xu K. Q., Yang J., Yuan A. H., Carbon, 2017, 116, 68.

    Article  CAS  Google Scholar 

  40. Gong Y., Pan J., Zhang L. L., Wang X., Song S. Y., Zhang H.Y., Chem. Res. Chinese Universities, 2022, 38, 1287.

    Article  CAS  Google Scholar 

  41. Ferrari A. C., Basko D. M., Nat. Nanotechnol., 2013, 8, 235.

    Article  CAS  PubMed  Google Scholar 

  42. Zheng F. C., Yang Y., Chen Q. W., Nat. Commun., 2014, 5, 10.

    Google Scholar 

  43. Zhang Z. Q., Wang H. B., Li Y. X., Xie M. G., Li C. G., Lu H. Y., Peng Y., Shi Z., Chem. Res. Chinese Universities, 2022, 38, 750.

    Article  Google Scholar 

  44. Sun F. Z., Wang G., Ding Y. Q., Wang C., Yuan B. B., Lin Y. Q., Adv. Energy Mater., 2018, 8, 11.

    Google Scholar 

  45. Wei K. L., Wang X., Jiao X. L., Li C., Chen D. R., Appl. Surf. Sci., 2021, 550, 10.

    Article  Google Scholar 

  46. Song C. S., Wu S. K., Shen X. P., Miao X. L., Ji Z. Y., Yuan A. H., Xu K. Q., Liu M. M., Xie X. L., Kong L. R., Zhu G. X., Shah S. A., J. Colloid Interface Sci., 2018, 524, 93.

    Article  CAS  PubMed  Google Scholar 

  47. Wang J., Wei Z. Z., Gong Y. T., Wang S. P., Su D. F., Han C. L., Li H. R., Wang Y., Chem. Commun., 2015, 51, 12859.

    Article  CAS  Google Scholar 

  48. Wang S. G., Qin J. W., Meng T., Cao M. H., Nano Energy, 2017, 39, 626.

    Article  CAS  Google Scholar 

  49. Chen L., Zuo S. Y., Guan Z. Y., Xu H. M., Xia D. S., Li D. Y., Res. Chem. Intermed., 2021, 47, 795.

    Article  CAS  Google Scholar 

  50. Long J. Y., Yan Z. S., Gong Y., Lin J. H., Appl. Surf. Sci., 2018, 448, 50.

    Article  CAS  Google Scholar 

  51. Iglesias D., Melchionna M., Catalysts, 2019, 9, 128.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22172058).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingjun Jia.

Ethics declarations

The authors declare no conflicts of interest.

Electronic Supplementary Information

40242_2024_4020_MOESM1_ESM.pdf

Supporting Information: Prussian blue analogue derived N-doped graphitic carbon wrapped iron-cobalt nanoparticles as recyclable heterogeneous catalysts for Friedel-Crafts acylation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, Z., Sun, H., Dong, Z. et al. Prussian Blue Analogue Derived N-Doped Graphitic Carbon Wrapped Iron-Cobalt Nanoparticles as Recyclable Heterogeneous Catalysts for Friedel-Crafts Acylation. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4020-x

Keywords

Navigation