Skip to main content

Advertisement

Log in

Potassium Promoted Ferrocene/Graphene for Ammonia Synthesis

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Innovation of catalysts for mild condition ammonia synthesis promotes the carbon neutrality. Herein we report that ferrocene supported on reduced graphene oxide (rGO) and promoted by alkali metal K is active catalyzing NH3 synthesis from N2/H2 mixture. It exhibits a NH3 formation rate of \(0.1\,\,{\rm{\mu mo}}{{\rm{l}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot g_c^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) at 190 °C and increases by one order of magnitude to \(2.1\,\,{\rm{\mu mo}}{{\rm{l}}_{{\rm{N}}{{\rm{H}}_3}}} \cdot g_c^{ - 1} \cdot {{\rm{h}}^{ - 1}}\) at 230 °C and under 0.1 MPa. By contrast, both rGO promoted by K and ferrocene supported on rGO without K promotion are almost inactive under the same conditions. Density functional theory calculations validate the essential role of K promoter for facilitating the adsorption of N2 at the coordination unsaturated iron sites in the cyclopentadienylidene form. This finding could guide further development of metal complex catalysts for mild condition ammonia synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abghoui Y., Garden A. L., Hlynsson V. F., Bjorgvinsdottir S., Olafsdottir H., Skulason E., Phys. Chem. Chem. Phys., 2015, 17, 4909.

    Article  CAS  PubMed  Google Scholar 

  2. Erisman J. W., Sutton M. A., Galloway J., Klimont Z., Winiwarter W., Nat. Geosci., 2008, 1, 636.

    Article  CAS  Google Scholar 

  3. Liu H. Z., Chin. J. Catal., 2014, 35, 1619.

    Article  CAS  Google Scholar 

  4. Ye T. N., Park S. W., Lu Y. F., Li J., Sasase M., Kitano M., Tada T., Hosono H., Nature, 2020, 583, 391.

    Article  CAS  PubMed  Google Scholar 

  5. Wang Q. R., Pan J., Guo J. P., Hansen H. A., Xie H., Jiang L., Hua L., Li H. Y., Guan Y. Q., Wang P. K., Gao W. B., Liu L., Cao H. J., Xiong Z. T., Vegge T., Chen P., Nat. Catal., 2021, 4, 959.

    Article  CAS  Google Scholar 

  6. Arashiba K., Miyake Y., Nishibayashi Y., Nat. Chem., 2011, 3, 120

    Article  CAS  PubMed  Google Scholar 

  7. Creutz S. E., Peters J. C., J. Am. Chem. Soc., 2014, 136, 1105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rodriguez M. M., Bill E., Brennessel W. W., Holland P. L., Science, 2011, 334, 780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y. X., Zhao J. F., Yang D. W., Wang B. M., Zhou Y. H., Wang J. H., Chen H., Mei T., Ye S. F., Qu J. P., Nat. Chem., 2022, 14, 46.

    Article  CAS  PubMed  Google Scholar 

  10. Ye T. N., Park S. W., Lu Y. F., Li J., Sasase M., Kitano M., Hosono H., J. Am. Chem. Soc., 2020, 142, 14374.

    Article  CAS  PubMed  Google Scholar 

  11. Pena L. A., Seidl A. J., Cohen L. R., Hoggard P. E., Transition. Met. Chem., 2009, 34, 135.

    Article  CAS  Google Scholar 

  12. Kaminsky W., Rulhoff S., Polimery, 2022, 53, 339.

    Article  Google Scholar 

  13. Taubmann S., Denner C. E., Alt H. G., J. Organomet. Chem., 2009, 694, 2005.

    Article  CAS  Google Scholar 

  14. Zhang M., Zhao F. Q., Li H., Dong S., Yang Y. J., Hou X. T., An T., Jiang Z. F., Phys. Chem. Chem. Phys., 2021, 23, 17567.

    Article  CAS  PubMed  Google Scholar 

  15. Deng D., Novoselov K. S., Fu Q., Zheng N., Tian Z., Bao X., Nat. Nanotechnol., 2016, 11, 218.

    Article  CAS  PubMed  Google Scholar 

  16. Deng D. H., Yu L., Chen X. Q., Wang G. X., Jin L., Pan X. L., Deng J., Sun G. Q., Bao X. H., Angew. Chem. Int. Ed., 2013, 52, 371.

    Article  CAS  Google Scholar 

  17. Deng J., Ren P. J., Deng D. H., Bao X. H., Angew. Chem. Int. Ed., 2015, 54, 2100.

    Article  CAS  Google Scholar 

  18. Zheng X. J., Deng J., Wang N., Deng D. H., Zhang W. H., Bao X. H., Li C., Angew. Chem. Int. Ed., 2014, 53, 7023.

    Article  CAS  Google Scholar 

  19. Mei X. G., Ouyang J. Y., Carbon, 2011, 49, 5389.

    Article  CAS  Google Scholar 

  20. Hua L., Wu Q., Hou K., Cui H., Chen P., Wang W., Li J., Li H., Anal. Chem., 2011, 83, 5309.

    Article  CAS  PubMed  Google Scholar 

  21. Kresse G., Furthmüller J., Physical Review B, 1996, 54, 11169.

    Article  CAS  Google Scholar 

  22. Blöchl P. E., Physical Review B, 1994, 50, 17953.

    Article  Google Scholar 

  23. Hammer B., Hansen L. B., Nørskov J. K., Physical Review B, 1999, 59, 7413.

    Article  Google Scholar 

  24. Chen H., Peng T. J., Liu B., Sun H. J., Lei D. H., Acta Physica. Sinica., 2017, 66, 080701.

    Article  Google Scholar 

  25. Lippincott E. R., Nelson R. D., J. Am. Chem. Soc., 1955, 77, 4990.

    Article  CAS  Google Scholar 

  26. Avinash M. B., Subrahmanyam K. S., Sundarayya Y., Govindaraju T., Nanoscale, 2010, 2, 1762.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Z., Chen H., Wang H., Huang W., Li H., Pan F., ACS Energy Lett., 2022, 7, 4168.

    Article  CAS  Google Scholar 

  28. Chen P., Wu Q. S., Ding Y. P., Small, 2007, 3, 644.

    Article  CAS  PubMed  Google Scholar 

  29. Zhang Y., Wang Z., Kouznetsova T. B., Sha Y., Xu E., Shannahan L., Fermen-Coker M., Lin Y., Tang C., Craig S. L., Nat. Chem., 2021, 13, 56.

    Article  CAS  PubMed  Google Scholar 

  30. Ertl G., Weiss M., Lee S. B., Chem. Phys. Lett., 2013, 589, 18.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2022YFA1604101).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiulian Pan or Xinhe Bao.

Ethics declarations

PAN Xiulian is the youth executive editorial board member for Chemical Research in Chinese Universities and was not involved in the editorial review or decision to publish this article. The authors declare no conflicts of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Ye, Y., Pan, X. et al. Potassium Promoted Ferrocene/Graphene for Ammonia Synthesis. Chem. Res. Chin. Univ. (2024). https://doi.org/10.1007/s40242-024-4019-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40242-024-4019-3

Keywords

Navigation