Skip to main content
Log in

Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

This work chooses Cu/Fe single-atom catalysts(SACs) with weak/strong oxygen affinity to clarify the effect of dual-atom configuration on oxygen reduction reaction(ORR) performance based on density functional theory(DFT) calculations. The stability and ORR activity of single or dual Cu/Fe atomic sites anchored on nitrogen-doped graphene sheets(Cu-N4-C, Cu2-N6-C, Fe-N4-C, and Fe2-N6-C) are investigated, and the results indicate the dual-atom catalysts(Cu2-N6-C and Fe2-N6-C) are thermodynamically stable enough to avoid sintering and aggregation. Compared with single-atom active sites of Cu-N4-C, which show weak oxygen affinity and poor ORR performance with a limiting potential of 0.58 V, the dual-Cu active sites of Cu2-N6-C exhibit enhanced ORR activity with a limiting potential up to 0.87 V due to strengthened oxygen affinity. Interestingly, for Fe SACs with strong oxygen affinity, the DFT results show that the dual-Fe sites stabilize the two OH* ligands structure[Fe2(OH)2-N6-C], which act as the active sites during ORR process, resulting in greatly improved ORR performance with a limiting potential of 0.90 V. This study suggests that the dual-atom design is a potential strategy to improve the ORR performance of SACs, in which the activity of the single atom active sites is limited with weak or strong oxygen affinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Meng Z., Chen N., Cai S., Wu J., Wang R., Tian T., Tang H., Nano Res., 2021, 14(12), 4768

    Article  CAS  Google Scholar 

  2. Wang Y., Wang D., Li Y., SmartMat, 2021, 2, 56

    Article  CAS  Google Scholar 

  3. Yang H., Liu Y., Liu X., Wang X., Tian H., Waterhouse G. I. N., Kruger P. E., Telfer S. G. Ma S., eScience, 2022, 2, 227

    Article  Google Scholar 

  4. Wu G., Santandreu A., Kellogg W., Gupta S., Ogoke O., Zhang H., Wang H., Dai L., Nano Energy, 2016, 29, 83

    Article  CAS  Google Scholar 

  5. Bing Y., Liu H., Zhang L., Ghosh D., Zhang J., Chem. Soc. Rev., 2010, 39, 2184

    Article  CAS  PubMed  Google Scholar 

  6. Yang L., Cheng D., Xu H., Zeng X., Wan X., Shui J., Xiang Z., Cao D., Proc. Natl. Acad. Sci. USA, 2018, 115, 6626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu J., Jiao M., Lu L., Barkholtz H. M., Li Y., Jiang L., Wu Z., Liu D., Zhuang L., Nat. Comm., 2017, 8, 15938

    Article  CAS  Google Scholar 

  8. Wu G., Zelenay P., Acc. Chem. Res., 2013, 46, 1878

    Article  CAS  PubMed  Google Scholar 

  9. Li Q., Cao R., Cho J., Wu G., Adv. Energy Mater., 2014, 4, 1301415

    Article  Google Scholar 

  10. Proietti E., Jaouen F., Lefe’vre M., Larouche N., Tian J., Herranz J., Dodelet J. P., Nat. Commun., 2011, 2, 416

    Article  PubMed  Google Scholar 

  11. Shen H., Gracia-Espino E., Ma J., Tang H., Mamat X., Wagberg T., Hu G., Guo S., Nano Energy, 2017, 35, 9

    Article  CAS  Google Scholar 

  12. Guo S., Yuan P., Zhang J., Jin P., Sun H., Lei K., Pang X., Xu Q., Cheng F., Chem. Commun., 2017, 53(71), 9862

    Article  CAS  Google Scholar 

  13. Shang H., Zhou X., Dong J., Li A., Zhao X., Liu Q., Lin Y., Pei J., Li Z., Jiang Z., Zhou D., Zheng L., Wang Y., Zhou J., Yang Z., Cao R., Sarangi R., Sun T., Yang X., Zheng X., Yan W., Zhuang Z., Li J., Chen W., Wang D., Zhang J., Li Y., Nat. Commun., 2020, 11(1), 3049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mun Y., Lee S., Kim K., Kim S., Lee S., Han J. W., Lee J., J. Am. Chem. Soc., 2019, 141(15), 6254

    Article  CAS  PubMed  Google Scholar 

  15. Han Y., Wang Y., Xu R., Chen W., Zheng L., Han A., Zhu Y., Zhang J., Zhang H., Luo J., Chen C., Peng Q., Wang D., Li Y., Energy Environ. Sci., 2018, 11, 2348

    Article  CAS  Google Scholar 

  16. Zhi Q., Jiang R., Liu W., Cun T., Wang K., Jiang J., Nano Res., 2022, 15(3), 1803

    Article  CAS  Google Scholar 

  17. Yu L., Li Y., Ruan Y., Angew. Chem. Int. Ed., 2021, 60(48), 25296

    Article  CAS  Google Scholar 

  18. Zhang L., Fischer J. M. T. A., Jia Y., Yan X., Xu W., Wang X., Chen J., Yang D., Liu H., Zhuang L., Hanke M., Searles D. J., Huang K., Feng S., Brown C. L., Yao X., J. Am. Chem. Soc., 2018, 140(34), 10757

    Article  CAS  PubMed  Google Scholar 

  19. Wang J., Huang Z., Liu W., Chang C., Tang H., Li Z., Chen W., Jia C., Yao T., Wei S., Wu Y., Li Y., J. Am. Chem. Soc., 2017, 139, 17281

    Article  CAS  PubMed  Google Scholar 

  20. Wang J., Liu W., Luo G., Li Z., Zhao C., Zhang H., Zhu M., Xu Q., Wang X., Zhao C., Qu Y., Yang Z., Yao T., Li Y., Lin Y., Wu Y., Li Y., Energy Environ. Sci., 2018, 11, 3375

    Article  CAS  Google Scholar 

  21. Xu J., Lai S., Qi D., Hu M., Peng X., Lu Y., Liu W., Hu G., Xu H., Li F., Li C., He J., Zhuo L., Sun J., Qiu Y., Zhang S., Luo J., Liu X., Nano Res., 2021, 14(5), 1374

    Article  CAS  Google Scholar 

  22. Zhang D., Chen W., Li Z., Chen Y., Zheng L., Gong Y., Li Q., Shen R., Han Y., Cheong W. C., Cu L., Li Y., Chem. Commun., 2018, 54, 4274

    Article  CAS  Google Scholar 

  23. Wang B., Zou J., Shen X., Yang Y., Hu G., Li W., Peng Z., Banham D., Dong A., Zhao D., Nano Energy, 2019, 63, 103851

    Article  CAS  Google Scholar 

  24. Lu Z., Wang B., Hu Y., Liu W., Zhao Y., Yang R., Li Z., Luo J., Chi B., Jiang Z., Li M., Mu S., Liao S., Zhang J., Sun X., Angew. Chem. Int. Ed., 2019, 58, 2622

    Article  CAS  Google Scholar 

  25. Zhu M., Wang J., Wu Y., Chem. Res. Chinese Universities, 2020, 36(3), 320

    Article  CAS  Google Scholar 

  26. Wang Y., Wang D., Li Y., J. Energy Chem., 2022, 65, 103

    Article  CAS  Google Scholar 

  27. Kresse G., Furthmüller J., Comput. Mater. Sci., 1996, 6, 15

    Article  CAS  Google Scholar 

  28. Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54, 11169

    Article  CAS  Google Scholar 

  29. Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett., 1996, 77, 3865

    Article  CAS  PubMed  Google Scholar 

  30. Kresse G., Joubert D., Phys. Rev. B, 1999, 59, 1758

    Article  CAS  Google Scholar 

  31. Blöchl P. E., Phys. Rev. B, 1994, 50, 17953

    Article  Google Scholar 

  32. Mathew K., Sundararaman R., Letchworth-Weaver K., Arias A. A., Henning R. G., J. Chem. Phys., 2014, 140, 084106

    Article  PubMed  Google Scholar 

  33. Kiran M., Chaitanya Kolluru V. S., Mula S., Steinmann S. N., Hennig R. G., J. Chem. Phys., 2019, 151, 23401

    Google Scholar 

  34. Nørskov J. K., Rossmeisl J., Logadottir A., Lindqvist L., Kitchin J.R., Bligaard T., Jonsson H., J. Phys. Chem. B, 2004, 108, 17886

    Article  Google Scholar 

  35. Gao J., Yang H., Huang X., Hung S. F., Cai W., Jia C., Miao S., Chen H. M., Yang X., Huang Y., Zhang T., Liu B., Chem, 2020, 6, 658

    Article  CAS  Google Scholar 

  36. Yan M., Dai Z., Chen S., Dong L., Zhang X. L., Xu Y., Sun C., J. Phys. Chem. C, 2020, 124, 13283

    Article  CAS  Google Scholar 

  37. Yang X., Xia D., Kang Y., Du H., Kang F., Gan L., Li J., Adv. Sci., 2020, 7, 2000176

    Article  CAS  Google Scholar 

  38. Xu J., Elangovan A., Li J., Liu B., J. Phys. Chem. C, 2021, 125, 2334

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China(No. 2021YFA1600800) and the National Natural Science Foundation of China(No. 22022508).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Wang.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting Information

40242_2022_2241_MOESM1_ESM.pdf

Special Issue of Single-atom Catalysis: Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-Atom Design for Enhanced Oxygen Reduction Reaction Activity

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, M., Wang, J. Regulating the Oxygen Affinity of Single Atom Catalysts by Dual-atom Design for Enhanced Oxygen Reduction Reaction Activity. Chem. Res. Chin. Univ. 38, 1275–1281 (2022). https://doi.org/10.1007/s40242-022-2241-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2241-4

Keywords

Navigation