Skip to main content
Log in

Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The mechanism is investigated for CptBuRh(OH)2-catalyzed annulation of 2-biphenylboronic acid with three activated alkenes using M06-2X functional. The reaction comprises transmetalation via two steps and following C-H activation producing reactive Rh-biphenyl complex with two Rh—C σ bonds. After the coordination/insertion of alkenes, respective fused or bridged cyclic products are yielded depending on different alkenes accompanied by the release of CptBuRh. The promotion of CptBuRh(OH)2 lies in the barrier decrease of transmetalation and C-H activation ready for coordination/insertion ensuring the smooth progress of common rate-limiting reductive elimination. The stereoselective transfer and ring rotation are specific for benzoquinone and cyclopropenone. The role of Rh(III) catalyst and release of Rh(I) is supported by Multiwfn analysis on frontier molecular orbital(FMO) of specific transiton states(TSs) and Mayer bond order(MBO) value of vital bonding, breaking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rej S., Ano Y., Chatani N., Chem. Rev., 2020, 120, 1788

    Article  CAS  PubMed  Google Scholar 

  2. Chan N. H., Gair J. J., Roy M., Qiu Y. Wang D.-S., Durak L. J. Chen L., Filatov A. S., Lewis, J. C., Organometallics, 2021, 40, 6

    Article  CAS  Google Scholar 

  3. Xing Y.-Y., Liu J.-B. Sun Q.-M., Sun C.-Z., Huang F., Chen D.-Z., J. Org. Chem., 2019, 84, 10690

    Article  CAS  PubMed  Google Scholar 

  4. Chu J.-H., Su Z.-H., Yen K.-W. Chien H.-I., Organometallics, 2020, 39, 3168

    Article  CAS  Google Scholar 

  5. Rani G., Luxami V., Paul K., Chem. Commun., 2020, 56, 12479

    Article  CAS  Google Scholar 

  6. Mas-Rosello J., Herraiz A. G., Audic B., Laverny A., Cramer N., Angew. Chem., Int. Ed., 2021, 60, 13198

    Article  CAS  Google Scholar 

  7. St John-Campbell S., Ou A. K., Bull J. A., Chem. — Eur. J., 2018, 24, 17838

    Article  CAS  PubMed  Google Scholar 

  8. Kapoor M., Singh A. Sharma K., Hsu H. M., Adv. Synth. Catal., 2020, 362, 4513

    Article  CAS  Google Scholar 

  9. Dutta U., Maiti S., Bhattacharya T., Maiti D., Science, 2021, 372, eabd5992

    Article  CAS  PubMed  Google Scholar 

  10. Wu M.-J., Chu J.-H., J. Chin. Chem. Soc., 2020, 67, 399

    Article  CAS  Google Scholar 

  11. Zhang S.-S., Hu T.-J., Li M.-Y., Song Y.-K., Yang X.-D., Feng C., Lin G.-Q., Angew. Chem., Int. Ed., 2019, 58, 3387

    Article  CAS  Google Scholar 

  12. Groves A., Sun J., Parke H. R. I., Callingham M., Argent S. P., Taylor L. J., Lam H. W., Chem. Sci., 2020, 11, 2759

    Article  PubMed  PubMed Central  Google Scholar 

  13. Moon S., Kato M., Nishii Y., Miura M., Adv. Synth. Catal., 2020, 362, 1669

    Article  CAS  Google Scholar 

  14. Partyka D. V., Chem. Rev., 2011, 111, 1529

    Article  CAS  PubMed  Google Scholar 

  15. Nagata T., Satoh T., Nishii Y., Miura M., Synlett, 2016, 27, 1707

    Article  CAS  Google Scholar 

  16. Xu S., Huang B., Qiao G., Huang Z., Zhang Z., Li Z., Wang P., Zhang Z., Org. Lett., 2018, 20, 5578

    Article  CAS  PubMed  Google Scholar 

  17. Kong W.-J., Finger L. H., Oliveira J. C. A., Ackermann L., Angew. Chem., Int. Ed., 2019, 58, 6342

    Article  CAS  Google Scholar 

  18. Chaudhary B., Kulkarni N., Saiyed N., Chaurasia M., Desai S., Potkule S., Sharma S., Adv. Synth. Catal., 2020, 362, 4794

    Article  CAS  Google Scholar 

  19. Chaudhary B., Auti P., Shinde S. D., Yakkala P. A., Giri D., Sharma S., Org. Lett., 2019, 21, 2763

    Article  CAS  PubMed  Google Scholar 

  20. Wen Z.-K., Zhao Z.-K., Wang N.-J., Chen Z.-L., Chao J.-B., Feng, L.-H., Org. Lett., 2019, 21, 9545

    Article  CAS  PubMed  Google Scholar 

  21. Li H., Wang M.-L., Liu Y.-W., Li L.-J., Xu H., Dai H.-X., ACS Catal., 2022, 12, 82

    Article  CAS  Google Scholar 

  22. Liu B., Yang L., Dong Z., Chang J., Li X., Org. Lett., 2021, 23, 7199

    Article  CAS  PubMed  Google Scholar 

  23. Wang X.-Y., Ke C.-Q., Tang C.-P., Yuan D., Ye Y., J. Nat. Prod., 2009, 72, 1209

    Article  CAS  PubMed  Google Scholar 

  24. Houk K. N., Cheong P. H. Y., Nature, 2008, 455, 309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lu N., Meng L., Chen D. Z., Zhang G. Q., J. Phys. Chem. A, 2012, 116, 670

    Article  CAS  PubMed  Google Scholar 

  26. Frisch M. J. Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., et al., Gaussian 09 (Revision B.01), Gaussian, Inc., Wallingford CT, 2009

    Google Scholar 

  27. Becke A. D., J. Chem. Phys., 1996, 104, 1040

    Article  CAS  Google Scholar 

  28. Lee C. T., Yang W. T., Parr R. G., Phys. Rev. B, 1988, 37, 785

    Article  CAS  Google Scholar 

  29. Hay P. J., Wadt W. R., J. Chem. Phys., 1985, 82, 270

    Article  CAS  Google Scholar 

  30. Tapia O., J. Math. Chem., 1992, 10, 139

    Article  CAS  Google Scholar 

  31. Tomasi J., Persico M., Chem. Rev., 1994, 94, 2027

    Article  CAS  Google Scholar 

  32. Simkin B. Y., Sheikhet I., Quantum Chemical and Statistical Theory of Solutions—A Computational Approach, Ellis Horwood, London, 1995

    Google Scholar 

  33. Tomasi J., Mennucci B., Cammi R., Chem. Rev., 2005, 105, 2999

    Article  CAS  PubMed  Google Scholar 

  34. Marenich A. V., Cramer C. J., Truhlar D. G., J. Phys. Chem. B, 2009, 113, 6378

    Article  CAS  PubMed  Google Scholar 

  35. Reed A. E., Weinstock R. B., Weinhold F., J. Chem. Phys., 1985, 83, 735

    Article  CAS  Google Scholar 

  36. Reed A. E., Curtiss L. A., Weinhold F., Chem. Rev., 1988, 88, 899

    Article  CAS  Google Scholar 

  37. Foresman J. B., Frisch A., Exploring Chemistry with Electronic Structure Methods, 2nd ed., Gaussian, Inc., Pittsburgh, 1996

    Google Scholar 

  38. Lu T., Chen F., J. Comput. Chem., 2012, 33, 580

    Article  PubMed  Google Scholar 

  39. Lu N., Wang H. T., Dalton Trans., 2013, 42, 13931

    Article  CAS  PubMed  Google Scholar 

  40. Lu N., Bu Y. X., Wang H. T., Phys. Chem. Chem. Phys., 2016, 18, 2913

    Article  CAS  PubMed  Google Scholar 

  41. Lu N., Lan X., Miao C., Qian P., Int. J. Quantum Chem., 2020, 120, e26340

    CAS  Google Scholar 

  42. Lu N., Liang H., Qian P., Lan X., Miao C., Int. J. Quantum Chem., 2020, 120, e26574

    Google Scholar 

  43. Frenking G., Fröhlich N., Chem. Rev., 2000, 100, 717

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos.21973056, 21972079), the Natural Science Foundation of Shandong Province, China(No.ZR2019MB050) and the Project of the Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Lu.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supplementary Information

40242_2022_2187_MOESM1_ESM.pdf

Theoretical investigation of the mechanism of Rh(III)-catalyzed annulation of 2-biphenylboronic acid with activated alkene

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, N., Miao, C. & Lan, X. Theoretical Investigation of the Mechanism of Rh(III)-catalyzed Annulation of 2-Biphenylboronic Acid with Activated Alkene. Chem. Res. Chin. Univ. 39, 276–282 (2023). https://doi.org/10.1007/s40242-022-2187-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-2187-6

Keywords

Navigation