Skip to main content

Advertisement

Log in

Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

The development of high specific capacitance electrode materials with high efficiency, scalability and economic feasibility is significant for the application of supercapacitors, however, the synthesis of electrode material still faces huge challenges. Herein, graphene(G)/Fe2O3 nanocomposite was prepared via a simple hydrothermal method connected with subsequent thermal reduction process. Scanning electron microscopy(SEM) and transmission electron microscopy(TEM) results showed rod-like Fe2O3 nanoparticles were prepared and well-dispersed on graphene layers, providing a rich active site and effectively buffering the aggregation of Fe2O3 nanoparticles in the process of electrochemical reaction. The specific capacitance of the obtained G/Fe2O3 nanocomposite as negative electrode for supercapacitor was 378.7 F/g at the current density of 1.5 A/g, and the specific capacitance retention was 88.76% after 3000 cycles. Furthermore, the asymmetric supercapacitor(ASC) was fabricated with G/Fe2O3 nanocomposite as negative electrode, graphene as positive electrode, which achieved a high energy density of 64.09 W·h/kg at a power density of 800.01 W/kg, maintained 30.07 W·h/kg at a power density of 8004.89 W/kg, and retained its initial capacitance by 78.04% after 3000 cycles. The excellent result offered a promising way for the G/Fe2O3 nanocomposite to be applied in high energy density storage systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao Y., Zhou R., Wang D., Huang Q., Cheng C. H., Zheng Z., Chem. Res. Chinese Universities, 2020, 36(1), 97

    Article  CAS  Google Scholar 

  2. Ali G. A. M., Thalji M. R., Soh W. C., Algarni H., Chong K. F., J. Solid State Electr., 2020, 24, 25

    Article  CAS  Google Scholar 

  3. Wang C., Meng Y., Wang L., Zhu F., Zhang Y., Chem. Res. Chinese Universities, 2018, 34(6), 882

    Article  CAS  Google Scholar 

  4. Li T., Liu H., Powder Technol., 2018, 327, 275

    Article  CAS  Google Scholar 

  5. Dai M., Zhao D., Wu X., Chin. Chem. Lett., 2020, 31, 2177

    Article  CAS  Google Scholar 

  6. Chen B., Xu L., Xie Z., Wong W. Y., EcoMat, 2021, 3, e12106

    CAS  Google Scholar 

  7. Meng Q., Xie C., Ding R., Cao L., Ma K., Li L., Weng Z., Wang Z., Chem. Res. Chinese Universities, 2018, 34(6), 1058

    Article  CAS  Google Scholar 

  8. Kheel H., Sun G. J., Lee J. K., Lee S., Dwivedi R. P., Lee C., Ceram. Int., 2016, 42, 1

    Article  CAS  Google Scholar 

  9. Liang S., Li J. P., Wang F., Qin J. L., Lai X. Y., Jiang X. M., Sens. Actuators B, 2017, 238, 923

    Article  CAS  Google Scholar 

  10. Jin W. X., Ma S. Y., Tie Z. Z., Jiang X. H., Li W. Q., Luo J., Xu X. L., Wang T. T., Sens. Actuators B, 2015, 220, 243

    Article  CAS  Google Scholar 

  11. Wang Y., Cao J., Wang S., Guo X., Zhang J., Xia X., Zhang S., Wu S., J. Phys. Chem. C, 2008, 112, 17804

    Article  CAS  Google Scholar 

  12. Li P., Cai Y., Fan H. Q., RSC Adv., 2013, 3, 22239

    Article  CAS  Google Scholar 

  13. Huang L. M., Fan H. Q., Sens. Actuators B, 2012, 171/172, 1257

    Article  CAS  Google Scholar 

  14. Yan W., Fan H. Q., Zhai Y. C., Yang C., Ren P. R., Huang L. M., Sens. Actuators B, 2011, 160, 1372

    Article  CAS  Google Scholar 

  15. Yang S. Y., Chang K. H., Tien H. W., Lee Y. F., Li S. M., Wang Y. S., Wang J. Y., Ma C. C. M., J. Mater. Chem., 2011, 21, 2374

    Article  CAS  Google Scholar 

  16. Ye D. X., Liang G. H., Li H. X., Luo J., Zhang S., Chen H., Kong J. L., Talanta., 2013, 116, 223

    Article  CAS  PubMed  Google Scholar 

  17. Yu B., Kuang D., Liu S., Liu C., Zhang T., Sens. Actuators B, 2014, 205, 120

    Article  CAS  Google Scholar 

  18. Venkatachalam V., Jayavel R., J. Electron. Mater., 2020, 49, 3174

    Article  CAS  Google Scholar 

  19. Zhao X., Liu B., Pan P., Yang Z., He J., Li H., Wei J., Cao Z., Zhang H., Chang J., Bao Q., Yang X., J. Mater. Sci., 2021, 56, 8102

    Article  CAS  Google Scholar 

  20. Chaitoglou S., Amade R., Bertran E., Nanoscale Res. Lett., 2017, 12, 635

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Tian Y., Yu Z., Cao L., Zhang X., Sun C., Wang D.W., J. Energy Chem., 2021, 55, 323

    Article  Google Scholar 

  22. Song Z., Liu W., Sun N., Wei W., Zhang Z., Liu H., Liu G., Zhao Z., Solid State Commun., 2019, 287, 27

    Article  CAS  Google Scholar 

  23. Thangappan R., Arivanandhan M., Kalaiselvamm S., Jayavel R., Hayakawa Y., J. Inorg. Organomet. Polym., 2018, 28, 50

    Article  CAS  Google Scholar 

  24. Li L., Gao P., Gai S., He F., Chen Y., Zhang M., Yang P., Electrochim. Acta, 2016, 190, 566

    Article  CAS  Google Scholar 

  25. Govindarajan D., Uma Shankar V., Gopalakrishnan R., J. Mater. Sci-Mater. El., 2019, 30, 16142

    Article  CAS  Google Scholar 

  26. Ma H., Kong D., Xu Y., Xie X., Tao Y., Xiao Z., Lv W., Jang H. D., Huang J., Yang Q. H., Small, 2017, 13, 1701026

    Article  CAS  Google Scholar 

  27. Fulari A. V., Reddy M. V. R., Jadhav S. T., Ghodake G. S., Kim D. Y., Lohar G. M., J. Mater. Sci-Mater. El., 2018, 29, 10814

    Article  CAS  Google Scholar 

  28. Du X., Wang S., Liu Y., Lu M., Wu K., Lu M., J. Solid State Chem., 2019, 277, 441

    Article  CAS  Google Scholar 

  29. Bello A., Makgopa K., Fabiane M., Dodoo-Ahrin D., Ozoemena K. I., Manyala N., J. Mater. Sci., 2013, 48, 6707

    Article  CAS  Google Scholar 

  30. Lim S. P., Hung N. M., Lim H. N., Ceram. Int., 2013, 39, 6647

    Article  CAS  Google Scholar 

  31. Wang G. S., Guan X. H., Zhang Z. W., Yang L., ChemPlusChem, 2017, 82, 1174

    Article  PubMed  CAS  Google Scholar 

  32. Zhang X. M., Li K. Z., Li H. J., Lu J. H., J. Colloid Interface Sci., 2013, 409, 1

    Article  CAS  PubMed  Google Scholar 

  33. Zhu S., Zou X., Zhou Y., Zheng Y., Long Y., Yuan Z., Wu Q., Li M., Wang Y., Xiang B., J. Alloys Compd., 2019, 775, 63

    Article  CAS  Google Scholar 

  34. Zhang J., Lin J., Wu J., Xu R., Lai M., Gong C., Chen X., Zhou P., Electrochim. Acta, 2016, 207, 87

    Article  CAS  Google Scholar 

  35. Zhu X. J., Zhu W., Murali Y. S., Stollers M. D., Ruoff R. S., ACS Nano., 2011, 5, 3333

    Article  CAS  PubMed  Google Scholar 

  36. Urbas K., Aleksandrzak M., Jedrzejczak M., Rakoczy R., Chen X., Mijowska E., Nanoscale Res. Lett., 2014, 9, 656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Lee K. K., Deng S., Fan H. M., Mhaisalkar S., Tan H. R., Tok E. S., Loh K. P., Chin W. S., Sow C. H., Nanoscale, 2012, 4, 2958

    Article  CAS  PubMed  Google Scholar 

  38. Kruk M., Jaroniec M., Chem. Mater., 2001, 13, 3169

    Article  CAS  Google Scholar 

  39. Jia X., Lian D., Bing S., Dai R., Li C., Wu X., J. Mater. Sci. Mater. Electron., 2017, 28, 12070

    Article  CAS  Google Scholar 

  40. Long C. L., Wei L., Yan J., Jiang L. L., Fan Z. J., ACS Nano., 2013, 7, 11325

    Article  CAS  PubMed  Google Scholar 

  41. Zhang H. F., Lu C. X., Chen C. M., Xie L. J., Zhou P. C., Kong Q. Q., Chem. Electro. Chem., 2017, 8, 1990

    Google Scholar 

  42. Palem R. R., Rameshc S., Yadavd H. M., Kim J. H., Sivasamy A., Kim H. S., Kim J. H., Lee S. H., Kang T. J., J. Mater. Sci. Technol., 2020, 9, 7615

    CAS  Google Scholar 

  43. Jayashree M., Parthibavarman M., Prabhakaran S., Ionics, 2019, 25, 3309

    Article  CAS  Google Scholar 

  44. Kore R. M., Lokhande B. J., J. Alloys. Compd., 2017, 725, 129

    Article  CAS  Google Scholar 

  45. Chaudhari S., Bhattacharjya D., Yu J. S., RSC Adv., 2013, 3, 25120

    Article  CAS  Google Scholar 

  46. Xu Y., Jiao Y., Shen L., Chen J., Lin H., J. Alloys. Compd., 2019, 780, 212

    Article  CAS  Google Scholar 

  47. Wu C., Zhang Z., Chen Z., Jiang Z., Li H., Cao H., Liu Y., Zhu Y., Fang Z., Yu X., Nano Res., 2021, 14, 953

    Article  CAS  Google Scholar 

  48. Geerthana M., Prabhu S., Harish S., Navaneethan M., Ramesh R., Selvaraj M., J. Mater. Sci: Mater. Electron, 2021, https://doi.org/10.1007/s10854-021-06128-6

  49. Tian J., Xue Y., Yu X., Pei Y., Zhang H., Wang J., J. Nanopart Res., 2019, 21, 247

    Article  CAS  Google Scholar 

  50. Fan H., Niu R., Duan J., Liu W., Shen W., ACS Appl. Mater. Inter., 2016, 8, 1947

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.52073238), the Science and Technology Planning Project in Panzhihua City, China(No.2021ZD-G-10), and the University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province, China(No.UNPYSCT-2018092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Gao or Zhenyu Li.

Additional information

Conflicts of Interest

The authors declare no conflicts of interest.

Supporting information for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Li, Y., Zhao, J. et al. Design and Preparation of Graphene/Fe2O3 Nanocomposite as Negative Material for Supercapacitor. Chem. Res. Chin. Univ. 38, 1097–1104 (2022). https://doi.org/10.1007/s40242-022-1442-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-022-1442-1

Keywords

Navigation