Skip to main content
Log in

A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array

  • Article
  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Graphene nanoribbons with zigzag edges(ZGNRs) have attracted much attention for their spin-polarized edge states predicted more than 15 years ago. Since the ZGNRs are fabricated on metal substrates using molecular precursors, due to their strong coupling with metal substrates, experimental detection of the spin-polarized edge states is still difficult. Here, we design a partially hydrogenated graphene(PHGr), in which periodic hexagonal graphene nanoflakes(GNFs) with zigzag boundaries are embedded in a hydrogenated graphene layer. Using density functional theory(DFT) based first-principles calculations, we find that the hexagonal GNFs exhibit spin-polarized boundary states at their opposite zigzag boundaries, which is similar with the bow-tie-shaped GNFs and ZGNRs. DFT calculations demonstrate that the PHGr is a semiconductor with an antiferromagnetic ground state. Moreover, the antiferromagnetic boundary states and semiconducting properties keep unchanged when the size of GNF varies from 1.4 nm to 2.3 nm. The robustness of the spin-polarized boundary states enables this PHGr as a robust material for detecting spin-polarized boundary states coming from zigzag boundaries. In addition, we find that single Au atoms selectively adsorbed on boundaries catalyze H2 dissociation and therefore lower the barrier of graphene hydrogenation. Therefore, the PHGr can be used not only in carbon-based spintronic devices but also as a platform for single atom catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Geim A. K., Novoselov K. S., Nat. Mater., 2007, 6(3), 183

    Article  CAS  Google Scholar 

  2. Castro Neto A. H., Guinea F., Peres N. M. R., Novoselov K. S., Geim A. K., Rev. Mod. Phys., 2009, 81(1), 109

    Article  CAS  Google Scholar 

  3. Avouris P., Nano Lett., 2010, 10(11), 4285

    Article  CAS  Google Scholar 

  4. Tan Y., Xia X.-S., Liao X.-L., Li J.-B., Zhong H.-H., Liang S., Xiao S., Liu L.-H., Luo J.-H., He M.-D., Chen L.-Q., Carbon, 2020, 157, 724

    Google Scholar 

  5. Li Y. Y., Chen M. X., Weinert M., Li L., Nat. Commun., 2014, 5(1), 4311

    Article  CAS  Google Scholar 

  6. Dutta S., Pati S. K., J. Mater. Chem., 2010, 20(38), 8207

    Article  CAS  Google Scholar 

  7. Nakada K., Fujita M., Dresselhaus G., Dresselhaus M. S., Phys. Rev. B, 1996, 54(24), 17954

    Article  CAS  Google Scholar 

  8. Magda G. Z., Jin X., Hagymási I., Vancsó P., Osváth Z., Nemes-Incze P., Hwang C., Biró L. P., Tapasztó L., Nature, 2014, 514(7524), 608

    Article  CAS  Google Scholar 

  9. Fujita M., Wakabayashi K., Nakada K., Kusakabe K., J. Phys. Soc. JPN, 1996, 65(7), 1920

    Article  CAS  Google Scholar 

  10. Son Y.-W., Cohen M. L., Louie S. G., Nature, 2006, 444(7117), 347

    Article  CAS  Google Scholar 

  11. Wang W. L., Yazyev O. V., Meng S., Kaxiras E., Phys. Rev. Lett., 2009, 102(15), 157201

    Article  Google Scholar 

  12. Yazyev O. V., Katsnelson M. I., Adv. Funct. Mater., 2012, 2, 71

    Google Scholar 

  13. Siemion F., Peter E. J., Sachsb H., Croat. Chem. Acta, 2005, 78, 195

    Google Scholar 

  14. Lieb E. H., Phys. Rev. Lett., 1989, 62(10), 1201

    Article  CAS  Google Scholar 

  15. Dutta S., Pati S. K., J. Phys. Chem. B, 2008, 112(5), 1333

    Article  CAS  Google Scholar 

  16. Ruffieux P., Wang S., Yang B., Sánchez-Sánchez C., Liu J., Dienel T., Talirz L., Shinde P., Pignedoli C. A., Passerone D., Dumslaff T., Feng X., Müllen K., Fasel R., Nature, 2016, 531(7595), 489

    Article  CAS  Google Scholar 

  17. Shinde P. P., Liu J., Dienel T., Gröning O., Dumslaff T., Mühlinghaus M., Narita A., Müllen K., Pignedoli C. A., Fasel R., Ruffieux P., Passerone D., Carbon, 2021, 175, 50

    Google Scholar 

  18. Mishra S., Beyer D., Eimre K., Kezilebieke S., Berger R., Gröning O., Pignedoli C. A., Müllen K., Liljeroth P., Ruffieux P., Feng X., Fasel R., Nat. Nanotechnol., 2020, 15(1), 22

    Article  CAS  Google Scholar 

  19. Li Y., Zhang W., Morgenstern M., Mazzarello R., Phys. Rev. Lett., 2013, 110(21), 216804

    Article  Google Scholar 

  20. Chen H., Que Y., Tao L., Zhang Y.-Y., Lin X., Xiao W., Wang D., Du S., Pantelides S. T., Gao H.-J., Nano Res., 2018, 11(7), 3722

    Article  CAS  Google Scholar 

  21. Li Y., Zhou Z., Cabrera C. R., Chen Z., Sci. Rep., 2013, 3, 2030

    Google Scholar 

  22. Chen H., Bao D.-L., Wang D., Que Y., Xiao W., Qian G., Guo H., Sun J., Zhang Y.-Y., Du S., Pantelides S. T., Gao H.-J., Adv. Mater., 2018, 30(32), 1801838

    Article  Google Scholar 

  23. Blöchl P. E., Phys. Rev. B, 1994, 50(24), 17953

    Article  Google Scholar 

  24. Kresse G., Joubert D., Phys. Rev. B, 1999, 59(3), 1758

    Article  CAS  Google Scholar 

  25. Kresse G., Furthmüller J., Phys. Rev. B, 1996, 54(16), 11169

    Article  CAS  Google Scholar 

  26. Kresse G., Furthmüller J., Comput. Mater. Sci., 1996, 6(1), 15

    Article  CAS  Google Scholar 

  27. Monkhorst H. J., Pack J. D., Phys. Rev. B, 1976, 13(12), 5188

    Article  Google Scholar 

  28. Henkelman G., Uberuaga B. P., Jónsson H., J. Chem. Phys., 2000, 113(22), 9901

    Article  CAS  Google Scholar 

  29. Henkelman G., Jónsson H., J. Chem. Phys., 2000, 113(22), 9978

    Article  CAS  Google Scholar 

  30. Lin X., Lu J. C., Shao Y., Zhang Y. Y., Wu X., Pan J. B., Gao L., Zhu S. Y., Qian K., Zhang Y. F., Bao D. L., Li L. F., Wang Y. Q., Liu Z. L., Sun J. T., Lei T., Liu C., Wang J. O., Ibrahim K., Leonard D. N., Zhou W., Guo H. M., Wang Y. L., Du S. X., Pantelides S. T., Gao H. J., Nat. Mater., 2017, 16(7), 717

    Article  CAS  Google Scholar 

  31. Liu Z.-L., Lei B., Zhu Z.-L., Tao L., Qi J., Bao D.-L., Wu X., Huang L., Zhang Y.-Y., Lin X., Wang Y.-L., Du S., Pantelides S. T., Gao H.-J., Nano Lett., 2019, 19(8), 4897

    Article  CAS  Google Scholar 

  32. Righi G., Magri R., Selloni A., J. Phys. Chem. C, 2019, 123(15), 9875

    Article  CAS  Google Scholar 

  33. Miura Y., Kasai H., Diño W., Nakanishi H., Sugimoto T., J. Appl. Phys., 2003, 93(6), 3395

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No.61888102), the National Key Research and Development Projects of China (Nos.2016YFA0202300, 2018YFA0305800), and the Strategic Priority Research Program of the Chinese Academy of Sciences, China(No.XDB30000000).

Computational resources were provided by the National Supercomputing Center in Tianjin, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shixuan Du.

Ethics declarations

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., Tao, L., Zhang, Y. et al. A DFT Investigation on the Electronic Structures and Au Adatom Assisted Hydrogenation of Graphene Nanoflake Array. Chem. Res. Chin. Univ. 37, 1110–1115 (2021). https://doi.org/10.1007/s40242-021-1163-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-021-1163-x

Keywords

Navigation