Skip to main content

Advertisement

Log in

Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

We prepared a cholesterol-conjugated chitosan(CHCS) material and evaluated its potential application as a bone tissue repair material by in vitro cell experiments. Cell proliferation, differentiation and morphology on CHCS membrane surfaces with different graft degrees were assessed in mouse pre-osteoblasts MC3T3-E1 cells. The results indicate that CHCS materials could promote the proliferation of MC3T3-E1 cells at low graft degrees, but the CHCS material with high graft degree inhibits the proliferation of cells in contrast to the pure chitosan membrane. However, the alkaline phosphatase(ALP) activity of MC3T3-E1 cells on different CHCS membrane surface increased with increasing graft degrees of cholesterol. The area of cells stretched onto the surface of CHCS materials was larger than on the surface of CS materials, and more microfilaments and stress fibers in cells were observed on CHCS materials than on the pure chitosan material surface. After 7 d, the expression of related osteogenic marker genes, such as runt-related transcription factor 2(Runx2), osterix(OSX), osteocalcin(OCN), osteopontin(OPN), ALP and collagen I(COL-I) were all up-regulated in CHCS materials to different degrees compared to pure chitosan material, which indicated that the CHCS materials facilitated MC3T3-E1 cell differentiation and maturation. Characterizing CHCS materials is useful in designing and developing strategies for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Murugan R., Ramakrishna S., Biomaterials, 2004, 25(17), 3829

    Article  CAS  Google Scholar 

  2. Lewandrowski K. U., Gresser J. D., Wise D. L., Trantolo D. J., Biomaterials, 2000, 21(8), 757

    Article  CAS  Google Scholar 

  3. Marc A. F. Y., Abbah S. A., Laoise M., Zeugolis D. I., Abhay P., Manus J. B., Adv. Drug Delivery Rev., 2014, 84, 1

    Google Scholar 

  4. Wang X. H., Ma J. B., Wang Y. N., He B. L., Biomaterials, 2002, 23(21), 4167

    Article  CAS  Google Scholar 

  5. Martino A., Sittinger M., Risbud M. V., Biomaterials, 2005, 26(30), 5983

    Article  Google Scholar 

  6. Jiang L. Y., Li Y. B., Zhang L., Liao J. G., J. Mat. Sci.: Mat. in Med., 2008, 19(3), 981

    CAS  Google Scholar 

  7. Lee J. Y., Nam S. H., Im S. Y., Park Y. J., Lee Y. M., Seol Y. J., Chung C. P., Lee S. J., J. Controlled Release, 2002, 78(1), 187

    Article  CAS  Google Scholar 

  8. Bagre A. P., Jain K., Jain N. K., Int. J. Pharm., 2013, 456(1), 31

    Article  CAS  Google Scholar 

  9. Agnihotri S. A., Mallikarjuna N. N., Aminabhavi T. M., J. Controlled Release, 2004, 100(1), 5

    Article  CAS  Google Scholar 

  10. Liu G., Luo Q., Gao H., Chen Y., Wei X., Dai H., Zhang Z., Ji J., Biomaterials Science, 2015, 3(3), 490

    Article  CAS  Google Scholar 

  11. Kim K., Dong Y. L., Lee H., Ji H. R., Biomaterials Science, 2013, 1(7), 783

    Article  CAS  Google Scholar 

  12. Anitha A., Sowmya S., Kumar P. T. S., Deepthi S., Chennazhi K. P., Prog. Polym. Sci., 2014, 39(9), 1644

    Article  CAS  Google Scholar 

  13. Jayakumar R., Prabaharan M., Kumar P. T. S., Nair S. V., Tamura H., Biotechnol. Adv., 2011, 29(3), 322

    Article  CAS  Google Scholar 

  14. Mi F. L., Shyu S. S., Wu Y. B., Lee S. T., Shyong J. Y., Biomaterials, 2001, 22(2), 165

    Article  CAS  Google Scholar 

  15. Gu Z., Xie H. X., Huang C., Li L., Yu X., Int. J. Biol. Macromol., 2013, 58, 121

    Article  CAS  Google Scholar 

  16. Li X., Wang X., Zhao T., Gao B., Miao Y., J. Oral and Maxillofacial Surgery, 2014, 72(2), 304

    Article  Google Scholar 

  17. Jayasuriya A. C., Kibbe S., J. Mater. Sci. Mater. Med., 2010, 21(2), 393

    Article  CAS  Google Scholar 

  18. Ding S., Tang M. J., Zhou C. R., Tian J. H., Li L. H., J. Functional Mater., 2012, 2, 12

    Google Scholar 

  19. Ding S., Tang M. J., Zhou C. R., Tian J. H., Li L. H., Chem. J. Chinese Universities, 2012, 33(5), 1110

    CAS  Google Scholar 

  20. Szczes A., Colloids and Surf.: Biointerfaces, 2013, 101, 44

    Article  CAS  Google Scholar 

  21. Laird D. F., Mucalo M. R., Yokogawa Y., J. Colloid Interface Sci., 2006, 295(2), 348

    Article  CAS  Google Scholar 

  22. Monika D. P., Ellis G., Linda O., Gerald H., Christine P., Biochemistry, 2006, 45(10), 3325

    Article  Google Scholar 

  23. Kubinová Š., Horák D., Syková E., Biomaterials, 2009, 30(27), 4601

    Article  Google Scholar 

  24. Li J., Yun H., Gong Y., Zhao N., Zhang X., Biomed. Mater. Res. A, 2005, 75(4), 985

    Article  Google Scholar 

  25. Yu G., Ji J., Shen J., J. Bioact. Compat. Polym., 2005, 20(6), 527

    Article  CAS  Google Scholar 

  26. Wang Y. S., Liu L. R., Jiang Q., Zhang Q. Q., Wang Y. S., Eur. Polym. J., 2007, 43(1), 43

    Article  Google Scholar 

  27. Yu J. M., Li Y. J., Qiu L. Y., Jin Y., Eur. P. J., 2008, 44(3), 555

    Article  CAS  Google Scholar 

  28. Cong Y. H., Wang W., Tian M., Meng F. B., Zhang B. Y., Liq. Cryst., 2009, 36(5), 455

    Article  CAS  Google Scholar 

  29. Yang J. Y., Ting Y. C., Lai J. Y., Liu H. L., Fang H. W., J. Biomed. Mater. Res. A, 2009, 90(3), 629

    Article  Google Scholar 

  30. Guo Z., Xu J., Ding S., Li H., Zhou C., J. Biomaterials Science, Polymer Edition, 2015, 26(15), 989

    Article  CAS  Google Scholar 

  31. Yu G., Ji J., Shen J., Acta Polym. Sinica, 2006, 1, 136

    Article  Google Scholar 

  32. Zhang Y., Zeng R., Zhou C. R., Polym. Mater. Sci. Eng., 2009, 11, 20

    CAS  Google Scholar 

  33. Piret G., Elisabeth G., Coffinier Y., Rabah B., Legrand D., Soft Matter, 2011, 7(18), 8642

    Article  CAS  Google Scholar 

  34. Anselme K., Davidson P., Popa A. M., Giazzon M., Liley M., Acta biomaterialia, 2010, 6(10), 3824

    Article  CAS  Google Scholar 

  35. Galkin V. E., Orlova A., EgelmanE. H., Curr. Biolo., 2012, 22(3), 96

    Article  Google Scholar 

  36. Lowery J., Kuczmarski E. R., Herrmann H., Goldman R. D., J. Biolo. Chem., 2015, 290(28), 115

    Article  Google Scholar 

  37. Chang T. H., Huang H. D., Ong W. K., Fu Y. J., Lee O. K., Biomaterials, 2014, 35(13), 3934

    Article  CAS  Google Scholar 

  38. Reinhard W., Michael B., Magin T. M., Leube R. E., Journal of Cell Biology, 2011, 194(5), 669

    Article  Google Scholar 

  39. Yamaki K., Harada I., Goto M., Cho C. S., Akaike T., Biomaterials, 2009, 30(7), 1421

    Article  CAS  Google Scholar 

  40. Riehl B. D., Park J. H., Kwon I. K., Lim J. Y., Tissue Eng. Part B: Rev., 2012, 18(4), 288

    Article  CAS  Google Scholar 

  41. Boudreault F. Tschumperlin D. J., Am. J. Respir. Cell Mol. Biol., 2010, 43(1), 64

    Article  CAS  Google Scholar 

  42. Dalby M. J., Riehle M. O., Johnstone H., Affrossman S., Curtis A. S. G., Biomaterials, 2002, 23(14), 2945

    Article  CAS  Google Scholar 

  43. Price R. L., Waid M. C., Haberstroh K. M., Webster T. J., Biomaterials, 2003, 24(11), 1877

    Article  CAS  Google Scholar 

  44. Weinreb M., Shinar D., Rodan G. A., J. Bone and Mineral Research, 1990, 5(8), 831

    Article  CAS  Google Scholar 

  45. Aubin J. E., Liu F., Malaval L., Gupta A. K., Bone, 1995, 17(2), S77

    Article  Google Scholar 

  46. Zhang Y., Xie R. L., Croce C. M., Stein J. L., Lian J. B., Proc. of the National Aca. Sci., 2011, 108(24), 9863

    Article  CAS  Google Scholar 

  47. Mark S., Fran O. V., Simpson K. J., John S., Smyth G. K., Nature, 2006, 439(7072), 84

    Article  Google Scholar 

  48. Bonnelye E., Chabadel A., Saltel F., Jurdic P., Bone, 2008, 42(1), 129

    Article  CAS  Google Scholar 

  49. Ferreira A. M., Gentile P., Chiono V., Ciardelli G., Acta Biomaterialia, 2012, 8(9), 3191

    Article  CAS  Google Scholar 

  50. Lin L., Chow K. L., Leng Y., J. Biomedi. Mater. Res. Part A, 2009, 89(2), 326

    Article  Google Scholar 

  51. Wang K. X., Denhardt D. T., Cytokine & Growth Factor Rev., 2008, 19(5), 333

    Article  CAS  Google Scholar 

  52. Liu Y. Y., Huang Y., Lu Z. R., Boamah P. O., Zhang Q., Wu J. B., Hua M. Q., Chem. J. Chinese Universites, 2015, 36(3), 589

    Article  CAS  Google Scholar 

  53. Tohmonda T., Miyauchi Y., Ghosh R., Yoda M., Uchikawa S., Takito J., Morioka H., Nakamura M., Iwawaki T., Chiba K., EMBO Reports, 2011, 12, 451

    Article  CAS  Google Scholar 

  54. Niu L. L., Huang D., Du J. J., Wei Y., Hu C. F., Ye J. Y., Chen W. Y., Chem. J. Chinese Universites, 2015, 36(10), 1873

    CAS  Google Scholar 

  55. Li H., Guo H., Li H., Steroids, 2013, 78, 426

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shan Ding or Changren Zhou.

Additional information

Supported by the National Natural Science Foundation of China(Nos.31400824, 81171459) and the Science and Technology Project of Guangdong Province, China(No.2014A010105030).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Wen, J., Jia, W. et al. Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair. Chem. Res. Chin. Univ. 32, 406–413 (2016). https://doi.org/10.1007/s40242-016-5510-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-016-5510-2

Keywords

Navigation