Skip to main content

Advertisement

Log in

Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Hierarchical TiO2 flower-spheres assembled from porous nanosheets-stacked of nanoparticles were synthesized by a simple hydrothermal method with one-step. The as-prepared TiO2 flower-spheres showed a diameter range from 200 nm to 550 nm and a large surface area of 188 m2/g. A double layer photoanode made of P25 nanoparticles and as-prepared TiO2 flower-spheres was fabricated for the dye sensitized solar cells(DSSCs). The efficient light scattering and dye absorption of the photoanode can be attributed to the top-layer of hierarchical TiO2 flower-spheres. DSSCs based on the double layers photoanode exhibit a higher energy conversion efficiency of 8.11% with a short-circuit photocurrent density of 17.87 mA/cm2, indicating that there is an increase of 38% in the conversion efficiency compared to those based on electrode P25(5.91%, 14.09 mA/cm2).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Regan B., Grätzel M., Nature, 1991, 353, 737

    Article  Google Scholar 

  2. Tulloch G. E., J. Photochem. Photobiol. A: Chem., 2004, 164, 209

    Article  CAS  Google Scholar 

  3. Qiu Y. C., Chen W., Yang S. H., Angew. Chem. Int. Ed., 2010, 49, 3675

    Article  CAS  Google Scholar 

  4. Chen D. H., Huang F. Z., Cheng Y. B., Caruso R. A., Adv. Mater., 2009, 21, 2206

    Article  CAS  Google Scholar 

  5. Liao J. Y., Lei B. X., Kuang D. B., Su C. Y., Energy Environ. Sci., 2011, 4, 4079

    Article  CAS  Google Scholar 

  6. Van L. J., Frank A. J., J. Phys. Chem. B, 2001, 105, 11194

    Article  Google Scholar 

  7. Liu B., Aydil E. S., J. Am. Chem. Soc., 2009, 131, 3985

    Article  CAS  Google Scholar 

  8. Wu J. J., Liu S. C., J. Phys. Chem. B, 2002, 106, 9546

    Article  CAS  Google Scholar 

  9. Mor G. K., Shankar K., Paulose M., Varghese O. K., Grimes C. A., Nano Lett., 2006, 6, 215

    Article  CAS  Google Scholar 

  10. Zhu K., Neale N. R., Miedaner A., Frank J. A., Nano Lett., 2007, 7, 69

    Article  CAS  Google Scholar 

  11. Feng X. J., Shankar K., Paulose M., Grimes C. A., Angew. Chem. Int. Ed., 2009, 48, 8239

    Article  Google Scholar 

  12. Hosono E., Fujihara S., Kakiuchi K., Imai H., J. Am. Chem. Soc, 2004, 126, 7790

    Article  CAS  Google Scholar 

  13. Barbé C. J., Arendse F., Comte P., Jirousek M., Lenzmann F., Shklover V., Grätzel M., J. Am. Chem. Soc., 1997, 80, 3157

    Google Scholar 

  14. Hore S., Vetter C., Kern R., Smit H., Hinsch A., Sol. Energy Mater. Sol. Cells, 2006, 90, 1176

    Article  CAS  Google Scholar 

  15. Mie G. A., Phys., 1908, 330, 377

  16. Chen H., Xu X. Q., Ouyang S., Kako T., Ye J. H., J. Phys. Chem. C, 2012, 116, 3833

    Article  Google Scholar 

  17. Sauvage F., Chen D. H., Comte P., Huang F. Z., Heiniger L. P., Cheng Y. B., Caruso R. A., Gräetzel M., ACS Nano, 2010, 4, 4420

    Article  CAS  Google Scholar 

  18. Wang Y. F., Li J. W., Hou Y. F., Yu X. Y., Su C. Y., Kuang D. B, Chem. Eur. J., 2010, 29, 8620

    Article  Google Scholar 

  19. Zhang Q. F., Chou T. R., Russo B., Jenekhe S. A., Cao G. Z., Angew. Chem. Int. Ed., 2008, 47, 2436

    Article  Google Scholar 

  20. Yan K. Y., Qiu Y. C., Chen W., Zhang M., Yang S. H., Energy Environ. Sci., 2011, 4, 2168

    Article  CAS  Google Scholar 

  21. Grätzel M., Accounts of Chem. Research, 2009, 42, 1788

    Article  Google Scholar 

  22. Feng L., Jia J. G., Fang Y. Y., Zhou X. W., Lin Y., Electrochimica Acta, 2013, 87, 629

    Article  CAS  Google Scholar 

  23. Zhao Y. L., Song D. M., Qiang Y. H., Gu X. Q., Zhu L., Song C. B., App. Surface Sci., 2014, 309, 85

    Article  CAS  Google Scholar 

  24. Wang G. X., Zhu X. J., Yu J. G., Journal of Power Sources, 2015, 278, 344

    Article  CAS  Google Scholar 

  25. Cheng P. F., Du S. S., Cai Y. X., Sun P., Zheng J., Lu G. Y., J. Phys. Chem. C, 2013, 117, 24150

    Article  CAS  Google Scholar 

  26. Ito S., Chen P., Comte P., Nazeeruddin M. K., Liska P., Péchy P., Grätzel M., Prog. Photovolt: Res. Appl., 2007, 15, 603

    Article  CAS  Google Scholar 

  27. Cheng P. F., Sun P., Du S. S., Cai Y. X., Li X. W., Wang Z. Y., Zheng J., Lu G. Y., RSC Adv., 2014, 4, 23396

    Article  CAS  Google Scholar 

  28. Yang L., Lin Y., Jia J. G., Xiao X. R., Li X. P., Zhou X.W., J. Power Sources, 2008, 182, 370

    Article  CAS  Google Scholar 

  29. Cheng P. F., Cai Y. X., Du S. S., Sun P., Lu G. Y., Zheng J., RSC Adv., 2013, 3, 23389

    Article  CAS  Google Scholar 

  30. Kim Y. J., Lee M. H., Kim H. J., Lim G., Choi Y. S., Park N. G., Kim K., Lee W. I., Adv. Mater., 2009, 21, 3668

    Article  CAS  Google Scholar 

  31. Gao F., Wang Y., Shi D., Zhang J., Wang M. K., Jing X. Y., Humphry-Baker R., Wang P., Zakeeruddin S. M., Grätzel M., J. Am. Chem. Soc., 2008, 130, 10720

    Article  CAS  Google Scholar 

  32. van de Hulst H. C., Q. J. Roy. Meteor. Soc., 1957, 84, 198

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pengfei Cheng or Fengmin Liu.

Additional information

Supported by the National Natural Science Foundation of China(Nos.61374218, 61134010, 61327804), the Program for Changjiang Scholars and Innovative Research Teams in University, China(No.IRT13018), the National High-Tech Research and Development Program of China(Nos.2013AA030902, 2014AA06A505), the Fundamental Research Funds for the Central Universities, China(Nos.JB151304, XJS14070) and the China Postdoctoral Science Foundation Funded Project(No. 2015M572525).

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Yao, S., Cheng, P. et al. Hierarchical TiO2 flower-spheres with large surface area and high scattering ability: an excellent candidate for high efficiency dye sensitized solar cells. Chem. Res. Chin. Univ. 31, 841–845 (2015). https://doi.org/10.1007/s40242-015-5037-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5037-y

Keywords

Navigation