Skip to main content
Log in

Hierarchical flower-like TiO2 microspheres with improved dye-sensitized solar cell performance

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Hierarchical flower-like TiO2 microspheres (FMS) and TiO2 nanorice (NR) were obtained, respectively, by controlling the dosage of Ti precursor via a simple hydrothermal process. Flower-like TiO2 microspheres consist of nanopetals grown from the center radially, the nanopetals are about several nm in average thickness, and each nanopetal has a thinned tip with an average size of 15 nm. The unique hierarchical TiO2 microspheres with large surface area (118.6 m2 g−1) suggested its potential application in dye-sensitized solar cells (DSSCs). The power conversion efficiency of FMS-based DSSCs (9.58%) is much higher than that of NR-based DSSCs (7.13%), which could be ascribed to its excellent light-scattering and dye absorption ability, shorter electron transport pathway and longer electron recombination time derived from the thin thickness and large specific surface area of nanopetals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.R. Prairie, L.R. Evans, B.M. Stange, S.L. Martine, Environ. Sci. Technol. 27, 1776–1782 (1993)

    Article  CAS  Google Scholar 

  2. W. Fan, Q. Zhang, Y. Wang, Phys. Chem Chem Phys. 15, 2632–2649 (2013)

    Article  CAS  Google Scholar 

  3. G.R. Bamwenda, H. Arakawa, Sol. Energy Mater. Sol. Cells 70, 1–14 (2001)

    Article  CAS  Google Scholar 

  4. G.R. Dey, A.D. Belapurkar, K. Kishore, J. Photochem. Photobiol. A 163, 503–508 (2004)

    Article  CAS  Google Scholar 

  5. M. Grätzel, Nature 414, 338 (2001)

    Article  Google Scholar 

  6. B. Oregan, M. Gratzel, Nature 353, 737–740 (1991)

    Article  CAS  Google Scholar 

  7. F. Sauvage, J.D. Decoppet, M. Graetzel, J. Am. Chem. Soc. 133, 9304–9310 (2011)

    Article  CAS  Google Scholar 

  8. S. Mathew, A. Yella, M. Graetzel, Nat. Chem. 6, 242–247 (2014)

    Article  CAS  Google Scholar 

  9. O. Amiri, M. Salavati-Niasari, N. Mir, F. Beshkar, M. Saadat, F. Ansari, Renew. Energy 125, 590–598 (2018)

    Article  CAS  Google Scholar 

  10. O. Amiri, M. Salavati-Niasari, S. Bagheri, A.T. Yousefi, Sci. Rep. 6, 25227 (2016)

    Article  CAS  Google Scholar 

  11. H. Teymourinia, M. Salavati-Niasari, O. Amiri, M. Farangi, J. Mol. Liq. 251, 267–272 (2018)

    Article  CAS  Google Scholar 

  12. J. Peet, J.Y. Kim, G.C. Bazan, Nat. Mater. 6, 497–500 (2007)

    Article  CAS  Google Scholar 

  13. L. Etgar, P. Gao, Z. Xue, M. Graetzel, J. Am. Chem. Soc. 134, 17396–17399 (2012)

    Article  CAS  Google Scholar 

  14. G.E. Eperon, V.M. Burlakov, H.J. Snaith, Adv. Funct. Mater. 24, 151–157 (2014)

    Article  CAS  Google Scholar 

  15. O. Amiri, N. Mir, F. Ansari, M. Salavati-Niasari, Electrochim. Acta 252, 315–321 (2017)

    Article  CAS  Google Scholar 

  16. Z.Q. Li, Y.P. Que, S.Y. Dai, ACS Appl. Mater. Interfaces 7, 10928–10934 (2015)

    Article  CAS  Google Scholar 

  17. M. Ye, J. Gong, Z. Lin, J. Am. Chem. Soc. 134, 15720–15723 (2012)

    Article  CAS  Google Scholar 

  18. T. Zhu, J. Li, Q. Wu, ACS Appl. Mater. Interfaces 3, 3448–3453 (2011)

    Article  CAS  Google Scholar 

  19. Y. Zhang, Q. Fu, G. Chen, Nanoscale 7, 12215–12224 (2015)

    Article  CAS  Google Scholar 

  20. Q. Zhang, T.R. Chou, G. Cao, Angew. Chem. Int. Ed. 47, 2402–2406 (2008)

    Article  CAS  Google Scholar 

  21. X. Xin, M. Scheiner, Z. Lin, Langmuir 27, 14594–14598 (2011)

    Article  CAS  Google Scholar 

  22. Y.J. Kim, M.H. Lee, W.I. Lee, Adv. Mater. 21, 3668–3673 (2009)

    Article  CAS  Google Scholar 

  23. X. Feng, K. Shankar, C.A. Grimes, Nano Lett. 8, 3781–3786 (2008)

    Article  CAS  Google Scholar 

  24. D. Lee, H.B. Kim, D.J. Jang, J. Mater. Sci. 49, 3414–3422 (2014)

    Article  CAS  Google Scholar 

  25. Z.Y. Luo, D.C. Mo, S.S. Lu, J. Mater. Sci. 49, 6742–6749 (2014)

    Article  CAS  Google Scholar 

  26. M. Ye, H.Y. Liu, Z. Lin, Small 9, 312–321 (2013)

    Article  CAS  Google Scholar 

  27. B. Liu, E.S. Aydil, J. Am. Chem. Soc. 131, 3985–3990 (2009)

    Article  CAS  Google Scholar 

  28. J. Yu, J. Fan, K. Lv, Nanoscale 2, 2144–2149 (2010)

    Article  CAS  Google Scholar 

  29. R. Zan, J. Xiao, X. Wen, J. Mater. Sci. 28, 4107–4113 (2017)

    CAS  Google Scholar 

  30. E. Hosono, S. Fujihara, H. Zhou, ACS Nano 1, 273–278 (2007)

    Article  CAS  Google Scholar 

  31. A.K. Sinha, S. Jana, T. Pal, CrystEngComm 11, 1210–1212 (2009)

    Article  CAS  Google Scholar 

  32. S.J. Ho, C.W. Yeh, H.S. Chen, Mater. Des. 115, 332–338 (2017)

    Article  CAS  Google Scholar 

  33. Y.P. Lin, S.Y. Lin, Y.W. Chen-Yang, J. Mater. Chem. A 1, 9875–9884 (2013)

    Article  CAS  Google Scholar 

  34. J. Xiao, P. Li, X. Wen, Nanotechnology 29, 175603 (2018)

    Article  CAS  Google Scholar 

  35. M. Ye, C. Chen, C. Lin, Nanoscale 5, 6577–6583 (2013)

    Article  CAS  Google Scholar 

  36. J.Y. Liao, B.X. Lei, C.Y. Su, Energy Environ. Sci. 4, 4079–4085 (2011)

    Article  CAS  Google Scholar 

  37. D. Cahen, G. Hodes, I. Riess, J. Phys. Chem. B 104, 2053–2059 (2000)

    Article  CAS  Google Scholar 

  38. R. Sui, V. Thangadurai, C.P. Berlinguette, Chem. Mater. 20, 7022–7030 (2008)

    Article  CAS  Google Scholar 

  39. J. Ye, W. Liu, L. Qi, J. Am. Chem. Soc. 133, 933–940 (2011)

    Article  CAS  Google Scholar 

  40. Z. Gao, Z. Wu, K. Jiang, CrystEngComm 15, 3351–3358 (2013)

    Article  CAS  Google Scholar 

  41. T. Hoshikawa, M. Yamada, K. Eguchi, J. Electrochem. Soc. 152, E68–E73 (2005)

    Article  CAS  Google Scholar 

  42. W.Q. Wu, Y.F. Xu, D.B. Kuang, Nanoscale 5, 4362–4369 (2013)

    Article  CAS  Google Scholar 

  43. D. Guo, S. Xiao, J. Yu, ACS Sustain. Chem. Eng. 5, 1315–1321 (2017)

    Article  CAS  Google Scholar 

  44. J.P. Gonzalez-Vazquez, J.A. Anta, J. Bisquert, J. Phys. Chem. C 114, 8552–8558 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank National Natural Science Foundation of China (No. 51072124) and the Sichuan Science and Technology Program (No. 2018GZ0463) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaogang Wen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zan, R., Lv, Y., Jiang, R. et al. Hierarchical flower-like TiO2 microspheres with improved dye-sensitized solar cell performance. J Mater Sci: Mater Electron 31, 1275–1282 (2020). https://doi.org/10.1007/s10854-019-02639-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02639-5

Navigation