Skip to main content
Log in

Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

TiO2 nanotubes supported amorphous Co-B(Co-B/TNTs) catalyst was prepared via impregnationchemical reduction procedure. The catalyst was characterized with transmission electron microscopy(TEM), ammonia temperature-programmed desorption(NH3-TPD), thermogravimetry-differential thermal analysis(TG-DTA), Fourier transform infrared spectroscopy(FTIR) and Raman spectroscopy. The effects of temperature and ratio of CO to H2 on the hydroformylation of 1-octene were studied. At an optimized reaction temperature(150 °C) and volume ratio of CO to H2(2:1), the conversion of 1-octene can reach 97.4% with a selectivity of 23.1% for total aldehydes and n/i-aldehyde molar ratio of 40:60. To obtain higher selectivity for linear aldehydes, Co-B/TNTs modified with triphenylphosphine for the hydroformylation of 1-octene were investigated. When molar ratio of P/Co was 4, the yield of total aldehydes was the highest(31.6%) with a good selectivity for linear product(n/i-aldehyde molar ratio was 70:30). In recycle use, the Co-B/TNTs catalyst modified with triphenylphosphine could be reused five times without reducing the activity and selectivity obviously. For a comparative study, all the Co-B/TNTs to catalyze the hydroformylation of other olefins exhibited high conversion under the optimized conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Piras I., Jennerjahn R., Jackstell R., Spannenberg A., Franke R., Beller M., Angew. Chem., 2011, 123(1), 294

    Article  Google Scholar 

  2. Neves Â. C. B., Calvete M. J. F., Pinho e Melo T. M. V. D., Pereira M. M., Eur. J. Org. Chem., 2012, 32, 6309

    Article  Google Scholar 

  3. Zhang L., Li C., Zheng X. L., Fu H. Y., Chen H., Li R. X., Catal. Lett., 2014, 144(6), 1074

    Article  CAS  Google Scholar 

  4. Gonsalvi L., Guerriero A., Monflier E., Peruzzini M., Top Curr. Chem., 2013, 342, 1

    Article  CAS  Google Scholar 

  5. Behr A., Reyer S., Tenhumberg N., Dalton Trans., 2011, 40(44), 11742

    Article  CAS  Google Scholar 

  6. Zhang D. L., Fu H. Y., Zhao X. Y., Zhao H. W., Chen H., Liu Y. M., Li X. J., Chem. J. Chinese Universities, 2012, 33(8), 1835

    CAS  Google Scholar 

  7. Dabbawala A. A., Bajaj H. C., Bricout H., Monflier E., Appl. Catal. A: Gen., 2012, 413/414, 273

    Google Scholar 

  8. Cai Y., Li Z. H., Yang Y. Q., Yuan Y. Z., Chem. Res. Chinese Universities, 2002, 18(3), 311

    CAS  Google Scholar 

  9. Song K. C., Baek J. Y., Bae J. A., Yim J. H., Ko Y. S., Kim D. H., Park Y. K., Jeon J. K., Catal. Today, 2011, 164(1), 561

    Article  CAS  Google Scholar 

  10. Wu L. P., Fleischer I., Jackstell R., Profir I., Franke R., Beller M., J. Am. Chem. Soc., 2013, 135(38), 14306

    Article  CAS  Google Scholar 

  11. Krausová Z., Sehnal P., Bondzic B. P., Chercheja S., Eilbracht P., StaráI G., Saman D., Starý I., Eur. J. Org. Chem., 2011, 20/21, 3849

    Google Scholar 

  12. Bungu P. N., Otto S., Dalton Trans., 2011, 40(36), 9238

    Article  CAS  Google Scholar 

  13. Vu T. V., Kosslick H., Schulz A., Harloff J., Paetzold E., Radnik J., Kragl U., Fuld G., Janiak C., Tuyen N. D., Micropor. Mesopor. Mater., 2013, 177, 135

    Article  CAS  Google Scholar 

  14. Gniewek A., Trzeciak A. M., Top Catal., 2013, 56(13/14), 1239

    Article  CAS  Google Scholar 

  15. Franke R., Selent D., Borner A., Chem. Rev., 2012, 112(11), 5675

    Article  CAS  Google Scholar 

  16. Adint T. T., Landis C. R., J. Am. Chem. Soc., 2014, 136(22), 7943

    Article  CAS  Google Scholar 

  17. Nairoukh Z., Blum J., J. Org. Chem., 2014, 79(6), 2397

    Article  CAS  Google Scholar 

  18. Li X. M., Ding Y. J., Jiao G. P., Li J. W., Yan L., Zhu H. J., Chem. Res. Chinese Universities, 2009, 25(5), 738

    Google Scholar 

  19. Yang Y., Deng C., Yuan Y., J. Catal., 2005, 232(1), 108

    Article  CAS  Google Scholar 

  20. Riisager A., Erikson K. M., Hjortkjaer J., Fehrmann R., J. Mol. Catal. A: Chem., 2003, 193(1/2), 259

    Article  CAS  Google Scholar 

  21. Wilkes J. S., Green Chem., 2002, 4(2), 73

    Article  CAS  Google Scholar 

  22. Makhubela B. C. E., Jardine A., Smith G. S., Green Chem., 2012, 14(2), 338

    Article  CAS  Google Scholar 

  23. Li X., Li J. H., Li S. J., Fang X., Fang F., Chu X. Y., Wang X. H., Hua J. X., Chem. Res. Chinese Universities, 2013, 29(6), 1032

    Article  CAS  Google Scholar 

  24. Zheng X. C., Zhang X. L., Wang S. P., Wang X. Y., Wu S. H., J. Nat. Gas Chem., 2007, 16(2), 179

    Article  CAS  Google Scholar 

  25. Guan R. Q., Chao G. K., Ye C. P., Wang Y. X., Liu Y. M., Li H. H., Zhao Y. J., Tai Y. L., Chem. Res. Chinese Universities, 2014, 30(2), 284

    Article  CAS  Google Scholar 

  26. Ma L., Peng Q. R., He D. H., Catal. Lett., 2009, 130(1/2), 137

    Article  CAS  Google Scholar 

  27. Hu X. J., Shi Y. K., Zhang Y. J., Zhu B. L., Zhang S. M., Huang W. P., Catal. Commun., 2015, 59, 45

    Article  CAS  Google Scholar 

  28. Aphairaj D., Wirunmongkol T., Niyomwas S., Pavasupree S., Ceram. Int., 2014, 40(7), 9241

    Article  CAS  Google Scholar 

  29. Li H. X., Chen X. F., Wang M. H., Xu Y. P., Appl. Catal. A: Gen., 2002, 225(1/2), 117

    Article  CAS  Google Scholar 

  30. Ivekovic D., Gajovic A., Ceh M., Pihlar B., Electroanal., 2010, 22(19), 2202

    Article  CAS  Google Scholar 

  31. Zanella R., Rodríguez-Gonzalez V., Arzola Y., Moreno-Rodriguez A., ACS Catal., 2012, 2(1), 1

    Article  CAS  Google Scholar 

  32. Gai L. G., Du G. J., Zuo Z. Y., Wang Y. M., Liu D., Liu H., J. Phys. Chem. C, 2009, 113(18), 7610

    Article  CAS  Google Scholar 

  33. Patel N., Fernandes R., Guella G., Kale A., Miotello A., Patton B., Zanchetta C., J. Phys. Chem. C, 2008, 112(17), 6968

    Article  CAS  Google Scholar 

  34. Birbeck J. M., Haynes A., Adams H., Damoense L., Otto S., ACS Catal., 2012, 2(12), 2512

    Article  CAS  Google Scholar 

  35. Li B. T., Li X. H., Asami K. J., Fujimoto K. R., Energ. Fuel, 2003, 17(4), 810

    Article  CAS  Google Scholar 

  36. Zhou G. B., Pei Y., Jiang Z., Fan K. N., Qiao M. H., Sun B., Zong B. N., J. Catal., 2014, 311, 393

    Article  CAS  Google Scholar 

  37. Wu D., Zhang J. W., Wang Y. H., Jiang J. Y., Jin Z. L., Appl. Organometal. Chem., 2012, 26(12), 718

    Article  CAS  Google Scholar 

  38. Wender I., Sternberg H. W., Orchin M., J. Am. Chem. Soc., 1953, 75(12), 3041

    Article  CAS  Google Scholar 

  39. Heck R. F., Breslow D. S., J. Am. Chem. Soc., 1961, 83(19), 4023

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Huang.

Additional information

Supported by the National Natural Science Foundation of China(Nos.21373120, 21301098, 21071086, 21271110), the National “111” Project of China’s Higher Education(No.B12015), the Applied Basic Research Programs of Science and Technology Commission Foundation of Tianjin, China(Nos.13JCQNJC02000, 12JCYBJC13100).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Hu, X., Zhu, B. et al. Hydroformylation of 1-octene over nanotubular TiO2-supported amorphous Co-B catalysts. Chem. Res. Chin. Univ. 31, 851–857 (2015). https://doi.org/10.1007/s40242-015-5002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-015-5002-9

Keywords

Navigation