Skip to main content
Log in

Effect of particle conductivity on Fe-Si composite electrodeposition

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

Coatings containing Fe-Si or Si particles were electrodeposited on 3.0%(mass fraction) Si steel sheets. The surface morphology, the cross-section and the silicon content of coating have been investigated, respectively. It was found that the number of particles on the coating surface and cross-section significantly decreased with increasing silicon content in the applied particles, leading to a decrease of the silicon content of coatings. About 10.2% silicon content of coatings deposited with Fe-30%Si particles can be obtained, whereas that for Si particles was only 2.9% at a particle concentration of 100 g/L and current density of 2 A/dm2. This is mainly attributed to the conductivity of applied particles. High conductivity can promote the co-deposition of the particles. With increasing silicon content in the particles, their conductivity decreased sharply, resulting in the decrease of silicon content of coatings. Present work may initiate a new method to modify the particle content of the composite coatings via changing the conductivity of the particles during the composite electrodeposition. In this paper, a possible mechanism was proposed to explain the phenomena.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ros-Yanez T., Houbaert Y., Fischer O., Schneider J., IEEE. Trans. Magn., 2001, 37, 2321

    Article  Google Scholar 

  2. Fiorillo F., J. Magn. Magn. Mater., 1996, 157, 428

    Article  Google Scholar 

  3. Park B. H., Kang B. S., Bu S. D., Noh S. D., Lee J., Jo W., Nature, 1999, 401, 682

    Article  CAS  Google Scholar 

  4. Takada Y., Abe M., Masuda S., Inagaki J., J. Appl. Phys., 1988, 64, 5367

    Article  CAS  Google Scholar 

  5. Ros-Yanez T., Ruiz D., Barros J., Houbaert Y., J. Alloy. Compd., 2004, 369, 125

    Article  CAS  Google Scholar 

  6. Bi X. F., Tanaka Y., Sato K., Arai K. I., Ishiyama K., Yamashiro Y., IEEE. Trans. Magn., 1996, 32, 4818

    Article  CAS  Google Scholar 

  7. Ninomiya H., Tanaka Y., Hiura A., Takada Y., J. Appl. Phys., 1991, 69, 5358

    Article  CAS  Google Scholar 

  8. Roy R. K., Panda A. K., Ghosh M., Mitria A., Ghosh R. N., J. Magn. Magn. Mater., 2009, 321, 2865

    Article  CAS  Google Scholar 

  9. Yuan W. J., Li J. G., Shen Q., Zhang L. M., J. Magn. Magn. Mater., 2008, 320, 76

    Article  CAS  Google Scholar 

  10. Tian G. K., Bi X. F., J. Alloy. Compd., 2010, 502, 1

    Article  CAS  Google Scholar 

  11. Kasama A. H., Bolfarini C., Kiminami C. S., Botta Filho W. J., J. Mater. Sci. Eng., 2007, 449, 375

    Article  Google Scholar 

  12. Haiji H., Okada K., Hiratani T., Abe M., Ninomiya M., J. Mag. Mag. Mater., 1996, 160, 109

    Article  CAS  Google Scholar 

  13. Choy K. L., Prog. Mater. Sci., 2003, 48, 57

    Article  CAS  Google Scholar 

  14. Yonemochi S., Sugiyama A., Kawamura K., Nagoya T., Aogaki R., J. Appl. Electrochem., 2004, 34, 1279

    Article  CAS  Google Scholar 

  15. Wang H. Z., Zhang P., Zhang W. G., Yao S. W., Chem. Res. Chinese Universities, 2012, 28(2), 313

    Article  Google Scholar 

  16. Popescu A. M., Cojocaru A., Donath C., Constantin V., Chem. Res. Chinese Universities, 2013, 29(5), 991

    Article  CAS  Google Scholar 

  17. Popescu A. M., Constantin V., Chem. Res. Chinese Universities, 2014, 30(1), 119

    Article  CAS  Google Scholar 

  18. Hovestad A., Janssen L. J. J., J. Appl. Electrochem. 1995, 25, 519

    Article  CAS  Google Scholar 

  19. Aruna S. T., Diwakar S., Jain A., Rajam K. S., Surf. Eng. 2005, 21, 209

    Article  CAS  Google Scholar 

  20. Meng X. L., Li H. Y., Wang J. S., Chem. J. Chinese Universities, 2012, 33(5), 1021

    CAS  Google Scholar 

  21. Erler F., Jakob C., Romanus H., Spiess L., Wielage B., Lampke T., Steinhauser S., Electrochim. Acta, 2003, 48, 3063

    Article  CAS  Google Scholar 

  22. Gyftou P., Stroumbouli M., Pavlatou E. A., Spyrellis N., Trans. Inst. Met. Finish., 2002, 80, 88

    CAS  Google Scholar 

  23. Zhong Y. B., Long Q., Zhou P. W., Sun Z. Q., Zheng T. X., A Method of Preparing High Silicon Steel Trip in Magnetic Field, CP201210327475.2, 2012

    Google Scholar 

  24. Sun Z. Q., Zhong Y. B., Fan L. J., Long Q., Zheng T. X., Ren W. L., Lei Z. S., Wang Q. L., Wang H., Dai Y. M., Acta. Phys. Sin., 2013, 62, 136801

    Google Scholar 

  25. Shimoda N., A Method of Surface Treatment Technology for Preparing Good Magnetic Property of Materials, JP2007262492, 2012

    Google Scholar 

  26. Hives J., Korenko M., Fellner P., Chem.Pap., 2001, 55, 81

    CAS  Google Scholar 

  27. Zhou P. W., Zhong Y. B., Wang H., Long Q., Li F., Sun Z. Q., Dong L. C., Fan L. J., Appl. Surf. Sci., 2013, 282, 624

    Article  CAS  Google Scholar 

  28. Zhou P. W., Zhong Y. B., Wang H., Fan L. J., Dong L. C., Li F., Long Q., Zheng T. X., Electrochim. Acta, 2013, 111, 126

    Article  CAS  Google Scholar 

  29. Pan Y. J., Zhang H., Wu X. J., Plat Fin., 2004, 26, 13

    Google Scholar 

  30. Viswanathan M., Ghouse M., Met. Finish., 1979, 77, 67

    CAS  Google Scholar 

  31. Ghouse M., Viswanathan M., Ramachandran E. G., Met. Finish., 1980, 78, 31

    CAS  Google Scholar 

  32. Long Q., Zhong Y. B., Li F., Liu C. M., Zhou J. F., Fan L. J., Li M. J., Acta Metal. Sin., 2013, 49, 1201

    Article  CAS  Google Scholar 

  33. Hu F., Chan K. C., Qu N. S., J. Solid State Electrochem., 2007, 11, 267

    Article  CAS  Google Scholar 

  34. Weier T., Eckert K., Muhlenhoff S., Cierpka C., Bund A., Uhlemann M., Electrochem. Commun., 2007, 9, 2479

    Article  CAS  Google Scholar 

  35. Peipmann R., Thomas J., Bund A., Electrochimica Acta, 2007, 52, 5808

    Article  CAS  Google Scholar 

  36. Bund A., Koehler S., Kuehnlein H. H., Plieth W., Electrochimica Acta, 2003, 49, 147

    Article  CAS  Google Scholar 

  37. Yamada T., Asai S., J. Jpn. I. Met., 2001, 65, 910

    CAS  Google Scholar 

  38. Feng Q. Y., Li T. J., Zhang Z. T., Zhang J., Liu M., Jin J., Surf. Coat. Tech., 2007, 201, 6247

    Article  CAS  Google Scholar 

  39. Wang C., Zhong Y. B., Ren W. L., Lei Z. S., Ren Z. M., Jia J., Jiang A. R., Appl. Surf. Sci., 2008, 254, 5649

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunbo Zhong.

Additional information

Supported by the National Natural Science Foundation of China(No.51034010) and the Project of the Science and Technology Commission of Shanghai Municipality, China(No.13JC1402500).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Long, Q., Zhong, Y., Zheng, T. et al. Effect of particle conductivity on Fe-Si composite electrodeposition. Chem. Res. Chin. Univ. 30, 811–816 (2014). https://doi.org/10.1007/s40242-014-4096-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-014-4096-9

Keywords

Navigation