Skip to main content
Log in

Mechanism of xylan pyrolysis by Py-GC/MS

  • Published:
Chemical Research in Chinese Universities Aims and scope

Abstract

In order to investigate the decomposition behavior of hemicellulose, xylan was chosen as the representative of hemicellulose to study the fast pyrolysis on the combination system of analytical pyrolyzer and gas chromatograph coupled with mass spectrometer(Py-GC/MS). The main condensable products of xylan pyrolysis consisted of acids, aldehydes, and ketones; while gas products contained CO2, CO, CH4 and H2. Acetic acid and furfural were the most abundant products with the highest contents of 20.11% and 20.24% respectively. While furfural and acetic acid were formed competitively with residence time and temperature increases, the distribution of xylan pyrolysis products did not vary with the residence time and temperature, while the total content of several kinds of products changed a lot. According to the analysis of experimental data, a reaction pathway of xylan decomposition was deduced so as to illustrate the formation mechanism of main products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jin Z. Y., Carbohydrate Chemistry, Chemical Industry Press, Beijing, 2008

    Google Scholar 

  2. Lavarack B. P., Griffin G. J., Rodman D., Biomass Bioenerg., 2002, 23(5), 367

    Article  CAS  Google Scholar 

  3. Girio F. M., Fonseca C., Carvalheiro F., Duarte L. C., Marques S., Bogel-Lukasik R., Bioresource Technol., 2010, 101(13), 4775

    Article  CAS  Google Scholar 

  4. Xiong W. M., Fu Y., Lai D. M., Guo Q. X., Chem. J. Chinese Universities, 2009, 30(9), 1754

    CAS  Google Scholar 

  5. Bridgwater A. V., Catal. Today, 1996, 29, 285

    Article  CAS  Google Scholar 

  6. Dodd D., Cann I. K. O., Glob. Change Biol. Bioenerg., 2009, 1, 2

    Article  CAS  Google Scholar 

  7. Guo X. J., Wang S. R., Wang K. G., Luo Z. Y., Chem. Res. Chinese Universities, 2011, 27(3), 426

    CAS  Google Scholar 

  8. Orfao J. J. M., Antunes F. J. A., Figueiredo J. L., Fuel, 1999, 78, 349

    Article  CAS  Google Scholar 

  9. Worasuwannarak N., Sonobe T., Tanthapanichakoon W., J. Anal. Appl. Pyrol., 2007, 78, 265

    Article  CAS  Google Scholar 

  10. Yang H. P., Yan R., Chen H. P., Lee D. H., Zheng C. G., Fuel, 2007, 86, 1781

    Article  CAS  Google Scholar 

  11. Yang H. P., Yan R., Chen H. P., Zheng C. G., Lee D. H., Liang D. T., Energ. Fuel, 2006, 20, 388

    Article  CAS  Google Scholar 

  12. Couhert C., Commandre J. M., Salvador S., Fuel, 2009, 88, 408

    Article  CAS  Google Scholar 

  13. Wang S. R., Guo X. J., Wang K. G., Luo Z. Y., J. Anal. Appl. Pyrol., 2011, 91, 183

    Article  CAS  Google Scholar 

  14. Bendahou A., Dufresne A., Kaddami H., Habibi Y., Carbohyd. Polym., 2007, 68, 601

    Article  CAS  Google Scholar 

  15. Hosoya T., Kawamoto H., Saka S., J. Anal. Appl. Pyrol., 2007, 78, 328

    Article  CAS  Google Scholar 

  16. Khezami L., Chetouani A., Taouk B., Capart R., Powder Technol., 2005, 157, 48

    Article  CAS  Google Scholar 

  17. Wang S. R., Tan H., Luo Z. Y., Wang L., Cen K. F., J. Zhejiang Univ.(Eng. Sci.), 2006, 40(3), 419

    Google Scholar 

  18. Yang C., Lu X., Lin W., Yang X., Yao J., Chem. Res. Chinese Universities, 2006, 22(4), 524

    Article  CAS  Google Scholar 

  19. Wang S. R., Guo X. J., Liang T., Zhou Y., Luo Z. Y., Bioresource Technol., 2012, 104, 722

    Article  CAS  Google Scholar 

  20. Lu Q., Li W. Z., Dong Z., Zhu X. F., J. Anal. Appl. Pyrol., 2009, 84, 131

    Article  CAS  Google Scholar 

  21. Guo X. J., Wang S. R., Zhou Y., Luo Z. Y., Int. J. Energ. Environ., 2011, 5(4), 524

    Google Scholar 

  22. Nowakowski D. J., Woodbridge C. R., Jones J. M., J. Anal. Appl. Pyrol., 2008, 83, 197

    Article  CAS  Google Scholar 

  23. Alén R., Kuoppala E., Oesch P., J. Anal. Appl. Pyrol., 1996, 36, 137

    Article  Google Scholar 

  24. Beall F. C., Wood Fiber Sci., 1969, 1(3), 215

    Google Scholar 

  25. Peng Y. J., Wang S. R., J. Anal. Appl. Pyrol., 2010, 88, 134

    Article  CAS  Google Scholar 

  26. Saha B. C., J. Ind. Microbiol. Biotechnol., 2003, 30, 79

    Article  Google Scholar 

  27. Ponder G. R., Richard G. N., Carbohyd. Res., 1991, 218, 143

    Article  CAS  Google Scholar 

  28. Shen D. K., Gu S., Bridgwater A. V., J. Anal. Appl. Pyrol., 2010, 87, 199

    Article  CAS  Google Scholar 

  29. Evans R. J., Milne T. A., Energ. Fuel, 1987, 1, 123

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-rong Wang.

Additional information

Supported by the National Natural Science Foundation of China(No.51276166), the Zhejiang Provincial Natural Science Foundation, China(No.R1110089), the National Science and Technology Supporting Plan Through Contract, China (No.2011BAD22B07), the Program for New Century Excellent Talents in University, China(No.NCET-10-0741) and the Zhejiang Provincial Key Science and Technology Innovation Team Program, China(No.2009R50012).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Sr., Liang, T., Ru, B. et al. Mechanism of xylan pyrolysis by Py-GC/MS. Chem. Res. Chin. Univ. 29, 782–787 (2013). https://doi.org/10.1007/s40242-013-2447-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40242-013-2447-6

Keywords

Navigation