Skip to main content

Advertisement

Log in

Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review

  • Review Paper
  • Published:
Progress in Biomaterials Aims and scope Submit manuscript

Abstract

The evolving technology of nanoparticle synthesis, especially silver nanoparticle (AgNPs) has already been applied in various fields i.e., electronics, optics, catalysis, food, health and environment. With advancement in research, it is possible to develop nanoparticles of various size, shape, morphology, and surface to volume ratio utilizing biological systems. A number of different agents and methods can be employed to develop choice based AgNPs using algae, plants, fungi and bacteria. The use of plant extracts to produce AgNPs appears to be more convenient, as the method is simple, environmental friendly and inexpensive, also requiring a single-step. The microbial synthesis of AgNps showed intracellular and extracellular mechanisms to reduce metal ions into nanoparticles. Studies have shown that different size (1–100 nm) and shapes (spherical, triangular and hexagonal etc.) of nanoparticles can be produced from various biological routes and these diverse nanoparticles have various functions and usability i.e., agriculture, medical-science, textile, cosmetics and environment protection. The present review provides an overview of various biological systems used for AgNP synthesis, its underlying mechanisms, further highlighting the current research and applications of variable shape and sized AgNPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdel-Raouf N, Alharbi RM, Al-Enazi NM, Alkhulaifi MM, Ibraheem BMI (2018) Rapid biosynthesis of silver nanoparticles using the marine red alga Laurencia catarinensis and their characterization. Beni-Suef University J Basic Appl Sci 7(1):150–157

    Google Scholar 

  • Abdelghany TM, Al-Rajhi AMH, Al Abboud MA et al (2018) Recent advances in green synthesis of silver nanoparticles and their applications: about future directions. A Review Bionanoscience 8:5–16. https://doi.org/10.1007/s12668-017-0413-3

    Article  Google Scholar 

  • Abécassis B, Testard F, Spalla O, Barboux P (2007) Probing in situ the nucleation and growth of gold nanoparticles by small-angle X-ray scattering. Nano Lett 7:1723–1727. https://doi.org/10.1021/nl0707149

    Article  CAS  Google Scholar 

  • Acharya D, Malabika Singha K, Pandey P et al (2018) Shape dependent physical mutilation and lethal effects of silver nanoparticles on bacteria OPEN. Sci Rep 8:201. https://doi.org/10.1038/s41598-017-18590-6

    Article  CAS  Google Scholar 

  • Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. https://doi.org/10.1016/J.JARE.2015.02.007

    Article  CAS  Google Scholar 

  • Ahmeda A, Zangeneh A, Zangeneh MM (2020) Preparation, formulation, and chemical characterization of silver nanoparticles using Melissa officinalis leaf aqueous extract for the treatment of acute myeloid leukemia in vitro and in vivo conditions. Appl Organomet Chem. https://doi.org/10.1002/aoc.5378

    Article  Google Scholar 

  • Akther T, Mathipi V, Senthil Kumar N, Davoodbasha MA, Srinivasan H (2019) Fungal-mediated synthesis of pharmaceutically active silver nanoparticles and anticancer property against A549 cells through apoptosis. Environ Sci Pollut Res 26(13):13649–13657

    CAS  Google Scholar 

  • Ali A, Mannan A, Hussain I et al (2018) Effective removal of metal ions from aquous solution by silver and zinc nanoparticles functionalized cellulose: Isotherm, kinetics and statistical supposition of process. Environ Nanotechnol Monit Manag 9:1–11. https://doi.org/10.1016/j.enmm.2017.11.003

    Article  Google Scholar 

  • Allam NG, Ismail GA, El-Gemizy WM, Salem MA (2019) Biosynthesis of silver nanoparticles by cell-free extracts from some bacteria species for dye removal from wastewater. Biotechnol Lett 41:379–389. https://doi.org/10.1007/s10529-019-02652-y

    Article  CAS  Google Scholar 

  • Amini E, Azadfallah M, Layeghi M, Talaei-Hassanloui R (2016) Silver-nanoparticle-impregnated cellulose nanofiber coating for packaging paper. Cellulose 23:557–570. https://doi.org/10.1007/s10570-015-0846-1

    Article  CAS  Google Scholar 

  • Anbu P, Gopinath SCB, Yun HS, Lee C-G (2019) Temperature-dependent green biosynthesis and characterization of silver nanoparticles using balloon flower plants and their antibacterial potential. J Mole Struct 1177:302–309

    CAS  Google Scholar 

  • Aziz N, Faraz M, Sherwani MA et al (2019) Illuminating the anticancerous efficacy of a new fungal chassis for silver nanoparticle synthesis. Front Chem 7:65. https://doi.org/10.3389/fchem.2019.00065

    Article  CAS  Google Scholar 

  • Badnore AU, Sorde KI, Datir KA et al (2019) Preparation of antibacterial peel-off facial mask formulation incorporating biosynthesized silver nanoparticles. Appl Nanosci 9:279–287. https://doi.org/10.1007/s13204-018-0934-2

    Article  CAS  Google Scholar 

  • Balashanmugam P, Balakumaran MD, Murugan R et al (2016) Phytogenic synthesis of silver nanoparticles, optimization and evaluation of in vitro antifungal activity against human and plant pathogens. Microbiol Res 192:52–64. https://doi.org/10.1016/j.micres.2016.06.004

    Article  CAS  Google Scholar 

  • Baranov MS, Khramov VN, Lotin AA, Khaydukov EV (2017) Fabrication, size control and functionalization of silver nanoparticles by pulsed laser ablation synthesis in liquid. In: Tuchin VV, Genina EA, Postnov DE, Derbov VL (eds) Saratov fall meeting 2016: optical technologies in biophysics and medicine XVIII. SPIE, p 103360R

  • Bhattacharyya A, Prasad R, Buhroo AA et al (2016) One-pot fabrication and characterization of silver nanoparticles using Solanum lycopersicum: an eco-friendly and potent control tool against rose aphid, Macrosiphum rosae. J Nanosci 2016:1–7. https://doi.org/10.1155/2016/4679410

    Article  CAS  Google Scholar 

  • Borah D, Das N, Das N, Bhattacharjee A, Sarmah P, Ghosh K, Chandel M, Rout J, Pandey P, Nath Ghosh N, Bhattacharjee CR (2020) Alga‐mediated facile green synthesis of silver nanoparticles: Photophysical, catalytic and antibacterial activity. Appl Organomet Chem 34(5)

  • Brayner R, Barberousse H, Hemadi M, Djedjat C, Yéprémian C, Coradin T, Couté A (2007) Cyanobacteria as bioreactors for the synthesis of Au, Ag, Pd, and Pt nanoparticles via an enzyme-mediated route. J Nanosci Nanotechnol 7(8):2696–2708

    CAS  Google Scholar 

  • Candido ICM, Soares JMD, de Barbosa JAB, de Oliveira HP (2019) Adsorption and identification of traces of dyes in aqueous solutions using chemically modified eggshell membranes. Bioresour Technol Rep 7:100267

    Google Scholar 

  • Carbone M, Donia DT, Sabbatella G, Antiochia R (2016) Silver nanoparticles in polymeric matrices for fresh food packaging. J King Saud Univ Sci 28:273–279

    Google Scholar 

  • Chauhan N, Tyagi AK, Kumar P, Malik A (2016) Antibacterial potential of Jatropha curcas synthesized silver nanoparticles against food borne pathogens. Front Microbiol 7:1748

    Google Scholar 

  • Choudhary P, Prajapati SK, Malik A (2016) Screening native microalgal consortia for biomass production and nutrient removal from rural wastewaters for bioenergy applications. Ecol Eng 91:221–230. https://doi.org/10.1016/j.ecoleng.2015.11.056

    Article  Google Scholar 

  • Dağlıoğlu Y, Yılmaz Öztürk B (2019) A novel intracellular synthesis of silver nanoparticles using Desmodesmus sp. (Scenedesmaceae): different methods of pigment change. Rendiconti Lincei. Scienze Fisiche e Naturali 30(3):611–621

    Google Scholar 

  • Dimkpa CO, McLean JE, Britt DW, Anderson AJ (2012) Bioactivity and biomodification of Ag, ZnO, and CuO nanoparticles with relevance to plant performance in agriculture. Ind Biotechnol 8:344–357

    CAS  Google Scholar 

  • Duval RE, Gouyau J, Lamouroux E (2019) Limitations of recent studies dealing with the antibacterial properties of silver nanoparticles: fact and opinion. Nanomaterials 9(12):1775

    CAS  Google Scholar 

  • Ebrahiminezhad A, Bagheri M, Taghizadeh SM et al (2016) Biomimetic synthesis of silver nanoparticles using microalgal secretory carbohydrates as a novel anticancer and antimicrobial. Adv Nat Sci Nanosci Nanotechnol. https://doi.org/10.1088/2043-6262/7/1/015018

    Article  Google Scholar 

  • Espana-Sanchez BL, Avila-Orta CA, Padilla-Vaca LF et al (2017) Early stages of antibacterial damage of metallic nanoparticles by TEM and STEM-HAADF. Curr Nanosci. https://doi.org/10.2174/2468187307666170906150731

    Article  Google Scholar 

  • Feizi H, Moghaddam PR, Shahtahmassebi N, Fotovat A (2012) Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biol Trace Elem Res 146:101–106

    CAS  Google Scholar 

  • Ferreira LAB, Garcia-Fossa F, Radaic A et al (2020) Biogenic silver nanoparticles: In vitro and in vivo antitumor activity in bladder cancer. Eur J Pharm Biopharm 151:162–170. https://doi.org/10.1016/j.ejpb.2020.04.012

    Article  CAS  Google Scholar 

  • Gao L, Fan K, Yan X (2017) Iron oxide nanozyme: a multifunctional enzyme mimetic for biomedical applications. Theranostics 7:3207–3227. https://doi.org/10.7150/thno.19738

    Article  CAS  Google Scholar 

  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR et al (2003) Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19:1357–1361. https://doi.org/10.1021/la020835i

    Article  CAS  Google Scholar 

  • Ghorbani HR (2013) Biosynthesis of silver nanoparticles using Salmonella typhirium. J Nanostruct Chem 3(1):29

    Google Scholar 

  • Gola D, Dey P, Bhattacharya A et al (2016) Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana. Bioresour Technol 218:388–396. https://doi.org/10.1016/j.biortech.2016.06.096

    Article  CAS  Google Scholar 

  • Gola D, Chauhan N, Malik A (2017) Bioremediation approach for handling multiple metal contamination. Handb Met Interact Bioremediat

  • Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M (2014) Biogenic synthesis of metal nanoparticles from actinomycetes: biomedical applications and cytotoxicity. Appl Microbiol Biotechnol 98(19):8083–8097

    CAS  Google Scholar 

  • González-Ballesteros N, González-Rodríguez JB, Rodríguez-Argüelles MC, Lastra M (2018) New application of two Antarctic macroalgae Palmaria decipiens and Desmarestia menziesii in the synthesis of gold and silver nanoparticles. Polar Sci 15:49–54

    Google Scholar 

  • Gurunathan S, Kalishwaralal K, Vaidyanathan R, Venkataraman D, Pandian SRK, Muniyandi J, Eom SH (2009) Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf B 74(1):328–335

    CAS  Google Scholar 

  • Hasnain MS, Javed MN, Alam MS et al (2019) Purple heart plant leaves extract-mediated silver nanoparticle synthesis: optimization by Box-Behnken design. Mater Sci Eng C 99:1105–1114. https://doi.org/10.1016/J.MSEC.2019.02.061

    Article  CAS  Google Scholar 

  • Hemmati S, Joshani Z, Zangeneh A, Zangeneh MM (2020) Biosynthesis and chemical characterization of polydopamine-capped silver nanoparticles for the treatment of acute myeloid leukemia in comparison to doxorubicin in a leukemic mouse model. Appl Organomet Chem. https://doi.org/10.1002/aoc.5277

    Article  Google Scholar 

  • Hill ML, Baldwin L, Slaughter JC, Walsh WF, Weitkamp JH (2010) A silver–alginate-coated dressing to reduce peripherally inserted central catheter (PICC) infections in NICU patients: a pilot randomized controlled trial. J Perinatol 30(7):469–473

    CAS  Google Scholar 

  • Hussain A, Alajmi MF, Khan MA, Pervez SA, Ahmed F, Amir S, Husain FM, Khan MS, Shaik GM, Hassan I, Khan RA, Tabish Rehman Md (2019) Biosynthesized silver nanoparticle (AgNP) from pandanus odorifer leaf extract exhibits anti-metastasis and anti-biofilm potentials. Front Microbiol. https://doi.org/10.3389/fmicb.2019.00008

    Article  Google Scholar 

  • Hussain I, Singh NB, Singh A et al (2016) Green synthesis of nanoparticles and its potential application. Biotechnol Lett 38:545–560. https://doi.org/10.1007/s10529-015-2026-7

    Article  CAS  Google Scholar 

  • Iravani S (2011) Green synthesis of metal nanoparticles using plants. Green Chem 13(10):2638–2650

    CAS  Google Scholar 

  • Jain A, Ahmad F, Gola D, Malik A, Chauhan N, Dey P, Tyagi PK (2020) Multi dye degradation and antibacterial potential of Papaya leaf derived silver nanoparticles. Environ Nanotechnol Monitor Manag 14:100337

    Google Scholar 

  • Jalal M, Ansari M, Alzohairy M, Ali S, Khan H, Almatroudi A, Raees K (2018) Biosynthesis of silver nanoparticles from oropharyngeal candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials 8(8):586

    Google Scholar 

  • Kaegi R, Voegelin A, Sinnet B et al (2011) Behavior of metallic silver nanoparticles in a pilot wastewater treatment plant. Environ Sci Technol 45:3902–3908. https://doi.org/10.1021/es1041892

    Article  CAS  Google Scholar 

  • Khandel P, Shahi SK (2018) Mycogenic nanoparticles and their bio-prospective applications: current status and future challenges. J Nanostruct Chem 8(4):369–391

    CAS  Google Scholar 

  • Khanna P, Kaur A, Goyal D (2019) Algae-based metallic nanoparticles: synthesis, characterization and applications. J Microbiol Meth 163:105656

    CAS  Google Scholar 

  • Kim D-Y, Saratale RG, Shinde S et al (2018) Green synthesis of silver nanoparticles using Laminaria japonica extract: characterization and seedling growth assessment. J Clean Prod 172:2910–2918. https://doi.org/10.1016/J.JCLEPRO.2017.11.123

    Article  CAS  Google Scholar 

  • Kokura S, Handa O, Takagi T, Ishikawa T, Naito Y, Yoshikawa T (2010) Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed Nanotechnol Biol Med 6(4):570–574

    CAS  Google Scholar 

  • Kraśniewska K, Galus S, Gniewosz M (2020) Biopolymers-based materials containing silver nanoparticles as active packaging for food applications—a review. Int J Mol Sci 21:698. https://doi.org/10.3390/ijms21030698

    Article  CAS  Google Scholar 

  • Kumar D, Kumar G, Agrawal V (2018) Green synthesis of silver nanoparticles using Holarrhena antidysenterica (L.) Wall.bark extract and their larvicidal activity against dengue and filariasis vectors. Parasitol Res 117:377–389. https://doi.org/10.1007/s00436-017-5711-8

    Article  Google Scholar 

  • Malakootian M, Yaseri M, Faraji M (2019) Removal of antibiotics from aqueous solutions by nanoparticles: a systematic review and meta-analysis. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-019-04227-w

    Article  Google Scholar 

  • Mane P, Chaudhari R, Qureshi N et al (2019) Silver nanoparticles-silk fibroin nanocomposite based colorimetric bio-interfacial sensor for on-site ultra-trace impurity detection of mercury ions. J Nanosci Nanotechnol 20:2122–2129. https://doi.org/10.1166/jnn.2020.17335

    Article  CAS  Google Scholar 

  • Manikandan R, Anjali R, Beulaja M et al (2019) Synthesis, characterization, anti-proliferative and wound healing activities of silver nanoparticles synthesized from Caulerpa scalpelliformis. Process Biochem. https://doi.org/10.1016/J.PROCBIO.2019.01.013

    Article  Google Scholar 

  • Martínez-Castañon GA, Nino-Martinez N, Martinez-Gutierrez F, Martinez-Mendoza JR, Ruiz F (2008) Synthesis and antibacterial activity of silver nanoparticles with different sizes. J Nanopart Res 10(8):1343–1348

    Google Scholar 

  • Mattea F, Vedelago J, Malano F et al (2017) Silver nanoparticles in X-ray biomedical applications. Radiat Phys Chem 130:442–450. https://doi.org/10.1016/j.radphyschem.2016.10.008

    Article  CAS  Google Scholar 

  • Mehrabani MG, Karimian R, Mehramouz B et al (2018) Preparation of biocompatible and biodegradable silk fibroin/chitin/silver nanoparticles 3D scaffolds as a bandage for antimicrobial wound dressing. Int J Biol Macromol 114:961–971. https://doi.org/10.1016/j.ijbiomac.2018.03.128

    Article  CAS  Google Scholar 

  • Mehrgardi MA, Ahangar LE (2011) Silver nanoparticles as redox reporters for the amplified electrochemical detection of the single base mismatches. Biosens Bioelectron 26:4308–4313. https://doi.org/10.1016/j.bios.2011.04.020

    Article  CAS  Google Scholar 

  • Mishra S, Singh HB (2015) Biosynthesized silver nanoparticles as a nanoweapon against phytopathogens: exploring their scope and potential in agriculture. Appl Microbiol Biotechnol 99:1097–1107

    CAS  Google Scholar 

  • Mobed A, Hasanzadeh M, Shadjou N et al (2020) Immobilization of ssDNA on the surface of silver nanoparticles-graphene quantum dots modified by gold nanoparticles towards biosensing of microorganism. Microchem J 152:104286. https://doi.org/10.1016/j.microc.2019.104286

    Article  CAS  Google Scholar 

  • Moghaddam AB, Namvar F, Moniri M et al (2015) Nanoparticles biosynthesized by fungi and yeast: a review of their preparation, properties, and medical applications. Molecules 20:16540–16565. https://doi.org/10.3390/molecules200916540

    Article  CAS  Google Scholar 

  • Mohanta Y, Nayak D, Biswas K, Singdevsachan S, Abd-Allah E, Hashem A, Alqarawi A, Yadav D, Mohanta T (2018) Silver nanoparticles synthesized using wild mushroom show potential antimicrobial activities against food borne pathogens. Molecules 23(3):655

    Google Scholar 

  • Molnár Z, Bódai V, Szakacs G et al (2018) Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep 8:3943. https://doi.org/10.1038/s41598-018-22112-3

    Article  CAS  Google Scholar 

  • Munger MA, Radwanski P, Hadlock GC, Stoddard G, Shaaban A, Falconer J, Deering-Rice CE (2014) In vivo human time-exposure study of orally dosed commercial silver nanoparticles. Nanomed Nanotechnol Biol Med 10(1):1–9

    CAS  Google Scholar 

  • Nayak BK, Nanda A, Prabhakar V (2018) Biogenic synthesis of silver nanoparticle from wasp nest soil fungus, Penicillium italicum and its analysis against multi drug resistance pathogens. Biocatal Agric Biotechnol 16:412–418

    Google Scholar 

  • Neethu S, Midhun SJ, Radhakrishnan EK, Jyothis M (2018) Green synthesized silver nanoparticles by marine endophytic fungus Penicillium polonicum and its antibacterial efficacy against biofilm forming, multidrug-resistant Acinetobacter baumanii. Microbial Pathog 116:263–272

    CAS  Google Scholar 

  • Negm MA, Ibrahim HA, Shaltout NA, Shawky HA, Abdel-mottaleb MS, Hamdona SK (2018) Green synthesis of silver nanoparticles using marine algae extract and their antibacterial activity. Sciences 8(03):957–970

    Google Scholar 

  • Ngeontae W, Janrungroatsakul W, Maneewattanapinyo P et al (2009) Novel potentiometric approach in glucose biosensor using silver nanoparticles as redox marker. Sens Actuators B Chem 137:320–326. https://doi.org/10.1016/j.snb.2008.11.003

    Article  CAS  Google Scholar 

  • Ovais M, Khalil AT, Raza A, Khan MA, Ahmad I, Ul Islam N, Saravanan M, Ubaid MF, Ali M, Shinwari ZK (2016) Green synthesis of silver nanoparticles via plant extracts: beginning a new era in cancer theranostics. Nanomedicine 11(23):3157–3177

    CAS  Google Scholar 

  • Ovais M, Khalil AT, Ayaz M, Ahmad I, Nethi SK, Mukherjee S (2018) Biosynthesis of metal nanoparticles via microbial enzymes: a mechanistic approach. Int J Mol Sci 19(12):4100

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73(6):1712–1720

    CAS  Google Scholar 

  • Pandey JK, Swarnkar RK, Soumya KK, Dwivedi P, Singh MK, Sundaram S, Gopal R (2014) Silver nanoparticles synthesized by pulsed laser ablation: as a potent antibacterial agent for human enteropathogenic gram-positive and gram-negative bacterial strains. Appl Biochem Biotechnol 174(3):1021–1031

    CAS  Google Scholar 

  • Parikh RY, Ramanathan R, Coloe PJ, Bhargava SK, Patole MS, Shouche YS, Bansal V (2011) Genus-wide physicochemical evidence of extracellular crystalline silver nanoparticles biosynthesis by Morganella spp. PLoS ONE 6(6):e21401

    CAS  Google Scholar 

  • Park HJ, Kim SH, Kim HJ, Choi SH (2006) A new composition of nanosized silica-silver for control of various plant diseases. Plant Pathol J 22:295–302

    Google Scholar 

  • Parthiban E, Manivannan N, Ramanibai R, Mathivanan N (2019) Green synthesis of silver-nanoparticles from Annona reticulata leaves aqueous extract and its mosquito larvicidal and anti-microbial activity on human pathogens. Biotechnol Rep 21:e00297

    Google Scholar 

  • Pauksch L, Hartmann S, Rohnke M, Szalay G, Alt V, Schnettler R, Lips KS (2014) Biocompatibility of silver nanoparticles and silver ions in primary human mesenchymal stem cells and osteoblasts. Actabiomaterialia 10(1):439–449

    CAS  Google Scholar 

  • Popli D, Anil V, Subramanyam AB et al (2018) Endophyte fungi, Cladosporium species-mediated synthesis of silver nanoparticles possessing in vitro antioxidant, anti-diabetic and anti-Alzheimer activity. Artif Cells Nanomed Biotechnol 46:676–683. https://doi.org/10.1080/21691401.2018.1434188

    Article  CAS  Google Scholar 

  • Pourali P, Baserisalehi M, Afsharnezhad S, Behravan J, Alavi H, Hosseini A (2012) Biological synthesis of silver and gold nanoparticles by bacteria in different temperatures (37 °C and 50 °C). J Pure Appl Microbiol 6:757–763

    CAS  Google Scholar 

  • Pourmortazavi SM, Taghdiri M, Makari V, Rahimi-Nasrabadi M (2015) Procedure optimization for green synthesis of silver nanoparticles by aqueous extract of Eucalyptus oleosa. Spectrochim Acta Part A Mol Biomol Spectrosc 136:1249–1254. https://doi.org/10.1016/J.SAA.2014.10.010

    Article  CAS  Google Scholar 

  • Prabhu S, Poulose EK (2012) Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int Nano Lett 2(1):32

    Google Scholar 

  • Pugazhendhi A, Prabakar D, Jacob JM et al (2018) Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog 114:41–45. https://doi.org/10.1016/J.MICPATH.2017.11.013

    Article  CAS  Google Scholar 

  • Qidwai A, Kumar R, Dikshit A (2018) Green synthesis of silver nanoparticles by seed of Phoenix sylvestris L. and their role in the management of cosmetics embarrassment. Green Chem Lett Rev 11:176–188. https://doi.org/10.1080/17518253.2018.1445301

    Article  CAS  Google Scholar 

  • Qing T, Mahmood M, Zheng Y et al (2018) A genomic characterization of the influence of silver nanoparticles on bone differentiation in MC3T3-E1 cells. J Appl Toxicol 38:172–179. https://doi.org/10.1002/jat.3528

    Article  CAS  Google Scholar 

  • Rai M, Yadav A, Gade A (2009) Silver nanoparticles as a new generation of antimicrobials. Biotechnol Adv 27:76–83. https://doi.org/10.1016/j.biotechadv.2008.09.002

    Article  CAS  Google Scholar 

  • Rajkumar T, Sapi A, Das G et al (2019) Biosynthesis of silver nanoparticle using extract of Zea mays (corn flour) and investigation of its cytotoxicity effect and radical scavenging potential. J Photochem Photobiol B Biol 193:1–7. https://doi.org/10.1016/J.JPHOTOBIOL.2019.01.008

    Article  CAS  Google Scholar 

  • Romeh AAA (2018) Green silver nanoparticles for enhancing the phytoremediation of soil and water contaminated by fipronil and degradation products. Water Air Soil Pollut. https://doi.org/10.1007/s11270-018-3792-3

    Article  Google Scholar 

  • Rose GK, Soni R, Rishi P, Soni SK (2019) Optimization of the biological synthesis of silver nanoparticles using Penicillium oxalicum GRS-1 and their antimicrobial effects against common food-borne pathogens. Green Process Synth 8:144–156. https://doi.org/10.1515/gps-2018-0042

    Article  CAS  Google Scholar 

  • Roy A, Bulut O, Some S, Mandal AK, Yilmaz MD (2019) Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Adv 9(5):2673–2702

    CAS  Google Scholar 

  • Roy S, Anantharaman P (2018) Biosynthesis of silver nanoparticle by amphiroa anceps (Lamarck) decaisne and Its biomedical and ecological implications. J Nanomed Nanotechnol 09(02)

  • Saha J, Begum A, Mukherjee A, Kumar S (2017) A novel green synthesis of silver nanoparticles and their catalytic action in reduction of Methylene Blue dye. Sustain Environ Res 27:245–250

    CAS  Google Scholar 

  • Seetharaman PK, Chandrasekaran R, Gnanasekar S, Chandrakasan G, Gupta M, Manikandan DB, Sivaperumal S (2018) Antimicrobial and larvicidal activity of eco-friendly silver nanoparticles synthesized from endophytic fungi Phomopsis liquidambaris. Biocatal Agric Biotechnol 16:22–30

    Google Scholar 

  • Shahzad A, Saeed H, Iqtedar M et al (2019) Size-controlled production of silver nanoparticles by Aspergillus fumigatus BTCB10: likely antibacterial and cytotoxic effects. J Nanomater. https://doi.org/10.1155/2019/5168698

    Article  Google Scholar 

  • Shaikh S, Nazam N, Rizvi SMD, Ahmad K, Baig MH, Lee EJ, Choi I (2019) Mechanistic insights into the antimicrobial actions of metallic nanoparticles and their implications for multidrug resistance. Int J Mole Sci 20(10):2468

    Google Scholar 

  • Sharma G, Jasuja ND, Kumar M, Ali MI (2015) Biological synthesis of silver nanoparticles by cell-free extract of spirulina platensis. J Nanotechnol 2015:1–6. https://doi.org/10.1155/2015/132675

    Article  CAS  Google Scholar 

  • Sharma K, Guleria S, Razdan VK (2020) Green synthesis of silver nanoparticles using Ocimum gratissimum leaf extract: characterization, antimicrobial activity and toxicity analysis. J Plant Biochem Biotechnol 29(2):213–224

    CAS  Google Scholar 

  • Shen W, Zhang L, Li X, Yu HZ (2019) Binary silanization and silver nanoparticle encapsulation to create superhydrophobic cotton fabrics with antimicrobial capability. Sci Rep 9:1–10. https://doi.org/10.1038/s41598-019-45622-0

    Article  CAS  Google Scholar 

  • Shirley AD, Dayanand A, Sreedhar B, Dastager SG (2010) Antimicrobial activity of silver nanoparticles synthesized from novel Streptomyces species. Dig J Nanomater Biostruct 5(2):447–451

    Google Scholar 

  • Singh R, Shedbalkar UU, Wadhwani SA, Chopade BA (2015) Bacteriagenic silver nanoparticles: synthesis, mechanism, and applications. Appl Microbiol Biotechnol 99(11):4579–4593

    CAS  Google Scholar 

  • Singh P, Kim YJ, Zhang D, Yang DC (2016a) Biological synthesis of nanoparticles from plants and microorganisms. Trends Biotechnol 34:588–599. https://doi.org/10.1016/j.tibtech.2016.02.006

    Article  CAS  Google Scholar 

  • Singh J, Kaur G, Kaur P, Bajaj R, Rawat M (2016b) A review on green synthesis and characterization of silver nanoparticles and their applications: a green nanoworld. World J Pharm PharmSci 7:730–762

    Google Scholar 

  • Sinha SN, Paul D, Halder N et al (2015) Green synthesis of silver nanoparticles using fresh water green alga Pithophora oedogonia (Mont.) Wittrock and evaluation of their antibacterial activity. Appl Nanosci 5:703–709. https://doi.org/10.1007/s13204-014-0366-6

    Article  CAS  Google Scholar 

  • Sivaramakrishnan M, Jagadeesan Sharavanan V, Karaiyagowder Govindarajan D, Meganathan Y, Devaraj BS, Natesan S, Kothandan R, Kandaswamy K (2019) Green synthesized silver nanoparticles using aqueous leaf extracts of Leucas aspera exhibits antimicrobial and catalytic dye degradation properties. SN Appl Sci 1(3)

  • Srikar SK, Giri DD, Pal DB et al (2016) Green synthesis of silver nanoparticles: a review. Green Sustain Chem 06:34–56. https://doi.org/10.4236/gsc.2016.61004

    Article  CAS  Google Scholar 

  • Sriram MI, Kalishwaralal K, Gurunathan S (2012) Biosynthesis of silver and gold nanoparticles using Bacillus licheniformis. Nanoparticles in biology and medicine. Humana Press, Totowa, pp 33–43

    Google Scholar 

  • Srivastava SK, Constanti M (2012) Room temperature biogenic synthesis of multiple nanoparticles (Ag, Pd, Fe, Rh, Ni, Ru, Pt Co, and Li) by Pseudomonas aeruginosa SM1. J Nanopart Res 14(4):831

    Google Scholar 

  • Srivastava S, Bhargava A, Pathak N, Srivastava P (2019) Production, characterization and antibacterial activity of silver nanoparticles produced by Fusarium oxysporum and monitoring of protein-ligand interaction through in-silico approaches. Microbial Pathog 129:136–145

    CAS  Google Scholar 

  • Sudha G, Balasundaram A (2018) Synthesis and characterization of silver nanoparticles using padina pavonica extract and evaluation of their antibacterial activity. J Nanosci Technol 4(4):424–426

    Google Scholar 

  • Sukirtha R, Priyanka KM, Antony JJ et al (2012) Cytotoxic effect of Green synthesized silver nanoparticles using Melia azedarach against in vitro HeLa cell lines and lymphoma mice model. Process Biochem 47:273–279. https://doi.org/10.1016/j.procbio.2011.11.003

    Article  CAS  Google Scholar 

  • Sumi MB, Devadiga A, Shetty KV, Saidutta MB (2017) Solar photocatalytically active, engineered silver nanoparticle synthesis using aqueous extract of mesocarp of Cocos nucifera (Red Spicata Dwarf). J Exp Nanosci 12(1):14–32

    CAS  Google Scholar 

  • Sylvia Devi H, Rajmuhon Singh N, David Singh T (2016) A benign approach for synthesis of silver nanoparticles and their application in treatment of organic pollutant. Arab J Sci Eng 41:2249–2256. https://doi.org/10.1007/s13369-015-2007-0

    Article  CAS  Google Scholar 

  • Taghavizadeh Yazdi ME, Hamidi A, Amiri MS, Kazemi Oskuee R, Hosseini HA, Hashemzadeh A, Darroudi M (2019) Eco-friendly and plant-based synthesis of silver nanoparticles using and investigation of its bactericidal, cytotoxicity, and photocatalytic effects. Mat Technol 34(8):490–497

    Google Scholar 

  • Tankhiwale R, Bajpai SK (2009) Graft copolymerization onto cellulose-based filter paper and its further development as silver nanoparticles loaded antibacterial food-packaging material. Colloids Surf B 69:164–168. https://doi.org/10.1016/j.colsurfb.2008.11.004

    Article  CAS  Google Scholar 

  • Tripathi D, Modi A, Narayan G, Rai SP (2019) Green and cost effective synthesis of silver nanoparticles from endangered medicinal plant Withania coagulans and their potential biomedical properties. Mater Sci Eng C 100:152–164. https://doi.org/10.1016/J.MSEC.2019.02.113

    Article  CAS  Google Scholar 

  • Tyagi S, Tyagi PK, Gola D, Chauhan N, Bharti RK (2019) Extracellular synthesis of silver nanoparticles using entomopathogenic fungus: characterization and antibacterial potential. SN Appl Sci 1(12):1545

    CAS  Google Scholar 

  • Tyagi PK, Mishra R, Khan F, Gupta D, Gola D (2020) Antifungal Effects of Silver Nanoparticles Against Various Plant Pathogenic Fungi and its Safety Evaluation on Drosophila melanogaster. Biointerface Res Appl Chem 10(6):6587–6596

    Google Scholar 

  • Velusamy P, Kumar GV, Jeyanthi V, Das J, Pachaiappan R (2016) Bio-inspired green nanoparticles: synthesis, mechanism, and antibacterial application. Toxicol Res 32(2):95–102

    CAS  Google Scholar 

  • Verma A, Mehata MS (2016) Controllable synthesis of silver nanoparticles using Neem leaves and their antimicrobial activity. J Radiat Res Appl Sci 9:109–115

    CAS  Google Scholar 

  • Vijayaraghavan K, Rangabhashiyam S, Ashokkumar T (2016) Mono- and multi-component biosorption of lead(II), cadmium(II), copper(II) and nickel(II) ions onto coco-peat biomass. Sep Sci Technol 6395(01496395):1212889. https://doi.org/10.1080/01496395.2016.1212889

    Article  CAS  Google Scholar 

  • Wen HC, Lin YN, Jian SR, Tseng SC, Weng MX, Liu YP et al (2007) Observation of growth of human fibroblasts on silver nanoparticles. J Phys 61:445

    CAS  Google Scholar 

  • Wiechers JW, Musee N (2010) Engineered inorganic nanoparticles and cosmetics: facts, issues, knowledge gaps and challenges. J Biomed Nanotechnol 6:408–431

    CAS  Google Scholar 

  • Wu Y, Yang Y, Zhang Z et al (2018) A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Adv Powder Technol 29:407–415. https://doi.org/10.1016/j.apt.2017.11.028

    Article  CAS  Google Scholar 

  • Yan X, He B, Liu L et al (2018) Antibacterial mechanism of silver nanoparticles Pseudomonas aeruginosa: proteomics approach. Metallomics 10:557–564. https://doi.org/10.1039/c7mt00328e

    Article  CAS  Google Scholar 

  • Zhu J, Liu S, Zhang T et al (2020) Porous gold layer coated silver nanoplates with efficient antimicrobial activity. Colloids Surf B Biointerfaces. https://doi.org/10.1016/j.colsurfb.2019.110727

    Article  Google Scholar 

Download references

Acknowledgements

Authors gratefully acknowledge the Department of Biotechnology (Noida Institute of Engineering and Technology); Department of Microbiology (Shaheed Rajguru College of Applied sciences for Women, University of Delhi) and University School of Environmental Management (Guru Gobind Singh Indraprastha University) for their kind support. One of the author (Randhir K. Bharti) is thankful to D.S Kothari Post-Doctoral Fellowship, UGC, Govt of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Chauhan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The proposed study complies with all the ethical guidelines.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garg, D., Sarkar, A., Chand, P. et al. Synthesis of silver nanoparticles utilizing various biological systems: mechanisms and applications—a review. Prog Biomater 9, 81–95 (2020). https://doi.org/10.1007/s40204-020-00135-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40204-020-00135-2

Keywords

Navigation