In Silico Pharmacology

, 5:1

Study of intra–inter species protein–protein interactions for potential drug targets identification and subsequent drug design for Escherichia coli O104:H4 C277-11

  • Shakhinur Islam Mondal
  • Zabed Mahmud
  • Montasir Elahi
  • Arzuba Akter
  • Nurnabi Azad Jewel
  • Md. Muzahidul Islam
  • Sabiha Ferdous
  • Taisei Kikuchi
Original Research


Protein–protein interaction (PPI) and host–pathogen interactions (HPI) proteomic analysis has been successfully practiced for potential drug target identification in pathogenic infections. In this research, we attempted to identify new drug target based on PPI and HPI computation approaches and subsequently design new drug against devastating enterohemorrhagic Escherichia coli O104:H4 C277-11 (Broad), which causes life-threatening food borne disease outbreak in Germany and other countries in Europe in 2011. Our systematic in silico analysis on PPI and HPI of E. coli O104:H4 was able to identify bacterial d-galactose-binding periplasmic and UDP-N-acetylglucosamine 1-carboxyvinyltransferase as attractive candidates for new drug targets. Furthermore, computational three-dimensional structure modeling and subsequent molecular docking finally proposed [3-(5-Amino-7-Hydroxy-[1,2,3]Triazolo[4,5-d]Pyrimidin-2-Yl)-N-(3,5-Dichlorobenzyl)-Benzamide)] and (6-amino-2-[(1-naphthylmethyl)amino]-3,7-dihydro-8H-imidazo[4,5-g]quinazolin-8-one) as promising candidate drugs for further evaluation and development for E. coli O104:H4 mediated diseases. Identification of new drug target would be of great utility for humanity as the demand for designing new drugs to fight infections is increasing due to the developing resistance and side effects of current treatments. This research provided the basis for computer aided drug design which might be useful for new drug target identification and subsequent drug design for other infectious organisms.


Drug resistance Host–pathogen interactions Homology modeling Molecular docking Protein structure 



Enterohemorrhagic E. coli


Host–pathogen interactions


Protein–protein interactions


Database of Interacting Proteins


Domain interaction map


Host–Pathogen Interaction Database


Structural Classification of Proteins


Protein Structural Interactome map


Database of Essential Genes


KEGG Automatic Annotation Server


Kyoto Encyclopedia of Genes and Genomes


Protein Data Bank


Structural Analysis and Verification Server


Computed Atlas of Surface Topography of proteins


Absorption, Distribution, Metabolism, Excretion and Toxicity


Human intestinal absorption


Blood brain barrier

Supplementary material

40203_2017_21_MOESM1_ESM.xlsx (92 kb)
Supplementary material 1 (XLSX 92 kb)
40203_2017_21_MOESM2_ESM.xlsx (122 kb)
Supplementary material 2 (XLSX 121 kb)
40203_2017_21_MOESM3_ESM.xlsx (194 kb)
Supplementary material 3 (XLSX 194 kb)
40203_2017_21_MOESM4_ESM.xlsx (170 kb)
Supplementary material 4 (XLSX 170 kb)
40203_2017_21_MOESM5_ESM.doc (76 kb)
Supplementary material 5 (DOC 75 kb)
40203_2017_21_MOESM6_ESM.doc (290 kb)
Supplementary material 6 (DOC 290 kb)


  1. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  2. Amineni U, Pradhan D, Marisetty H (2010) In silico identification of common putative drug targets in Leptospira interrogans. J Chem Biol 3(4):165–173CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aranda B, Achuthan P, Alam-Faruque Y, Armean I, Bridge A, Derow C et al (2010) The IntAct molecular interaction database in 2010. Nucleic Acids Res 38(Database issue):D525–D531CrossRefPubMedGoogle Scholar
  4. Archakov AI, Govorun VM, Dubanov AV, Ivanov YD, Veselovsky AV, Lewi P et al (2003) Protein–protein interactions as a target for drugs in proteomics. Proteomics 3(4):380–391CrossRefPubMedGoogle Scholar
  5. Arinaminpathy Y, Khurana E, Engelman DM, Gerstein MB (2009) Computational analysis of membrane proteins: the largest class of drug targets. Drug Discov Today 14(23–24):1130–1135CrossRefPubMedPubMedCentralGoogle Scholar
  6. Azam SS, Abbasi SW (2013) Molecular docking studies for the identification of novel melatoninergic inhibitors for acetylserotonin-O-methyltransferase using different docking routines. Theor Biol Med Model 10:63CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bader GD, Betel D, Hogue CW (2003) BIND: the Biomolecular Interaction Network Database. Nucleic Acids Res 31(1):248–250CrossRefPubMedPubMedCentralGoogle Scholar
  8. Bielaszewska M, Mellmann A, Zhang W, Kock R, Fruth A, Bauwens A et al (2011) Characterisation of the Escherichia coli strain associated with an outbreak of haemolytic uraemic syndrome in Germany, 2011: a microbiological study. Lancet Infect Dis 11(9):671–676CrossRefPubMedGoogle Scholar
  9. Borrok MJ, Kiessling LL, Forest KT (2007) Conformational changes of glucose/galactose-binding protein illuminated by open, unliganded, and ultra-high-resolution ligand-bound structures. Protein Sci Publ Protein Soc 16(6):1032–1041CrossRefGoogle Scholar
  10. Bradley KK, Williams JM, Burnsed LJ, Lytle MB, McDermott MD, Mody RK et al (2012) Epidemiology of a large restaurant-associated outbreak of Shiga toxin-producing Escherichia coli O111:NM. Epidemiol Infect 140(9):1644–1654CrossRefPubMedGoogle Scholar
  11. Brooks JT, Sowers EG, Wells JG, Greene KD, Griffin PM, Hoekstra RM et al (2005) Non-O157 Shiga toxin-producing Escherichia coli infections in the United States, 1983–2002. J Infect Dis 192(8):1422–1429CrossRefPubMedGoogle Scholar
  12. Chan JN, Nislow C, Emili A (2010) Recent advances and method development for drug target identification. Trends Pharmacol Sci 31(2):82–88CrossRefPubMedGoogle Scholar
  13. Damte D, Suh JW, Lee SJ, Yohannes SB, Hossain MA, Park SC (2013) Putative drug and vaccine target protein identification using comparative genomic analysis of KEGG annotated metabolic pathways of Mycoplasma hyopneumoniae. Genomics 102(1):47–56CrossRefPubMedGoogle Scholar
  14. de Lima Morais DA, Fang H, Rackham OJ, Wilson D, Pethica R, Chothia C et al (2011) SUPERFAMILY 1.75 including a domain-centric gene ontology method. Nucleic Acids Res 39(Database issue):D427–D434CrossRefPubMedGoogle Scholar
  15. Driscoll T, Dyer MD, Murali TM, Sobral BW (2009) PIG—the pathogen interaction gateway. Nucleic Acids Res 37(Database issue):D647–D650CrossRefPubMedGoogle Scholar
  16. Duffield M, Cooper I, McAlister E, Bayliss M, Ford D, Oyston P (2010) Predicting conserved essential genes in bacteria: in silico identification of putative drug targets. Mol BioSyst 6(12):2482–2489CrossRefPubMedGoogle Scholar
  17. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34(Web Server issue):W116–W118CrossRefPubMedPubMedCentralGoogle Scholar
  18. Eisenberg D, Marcotte EM, Xenarios I, Yeates TO (2000) Protein function in the post-genomic era. Nature 405(6788):823–826CrossRefPubMedGoogle Scholar
  19. Eschenburg S, Priestman M, Schonbrunn E (2005) Evidence that the fosfomycin target Cys115 in UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) is essential for product release. J Biol Chem 280(5):3757–3763CrossRefPubMedGoogle Scholar
  20. Evans DJ, Evans DG (1996) Escherichia Coli in diarrheal disease. In: Baron S (ed) Medical microbiology, 4th edn. University of Texas Medical Branch at Galveston, Galveston, TXGoogle Scholar
  21. Frank C, Werber D, Cramer JP, Askar M, Faber M, an der Heiden M et al (2011) Epidemic profile of Shiga-toxin-producing Escherichia coli O104:H4 outbreak in Germany. N Engl J Med 365(19):1771–1780CrossRefPubMedGoogle Scholar
  22. Gautam A, Rishi P, Tewari R (2011) UDP-N-acetylglucosamine enolpyruvyl transferase as a potential target for antibacterial chemotherapy: recent developments. Appl Microbiol Biotechnol 92(2):211–225CrossRefPubMedGoogle Scholar
  23. Gillespie JJ, Wattam AR, Cammer SA, Gabbard JL, Shukla MP, Dalay O et al (2011) PATRIC: the comprehensive bacterial bioinformatics resource with a focus on human pathogenic species. Infect Immun 79(11):4286–4298CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gong S, Yoon G, Jang I, Bolser D, Dafas P, Schroeder M et al (2005a) PSIbase: a database of Protein Structural Interactome map (PSIMAP). Bioinformatics 21(10):2541–2543CrossRefPubMedGoogle Scholar
  25. Gong S, Park C, Choi H, Ko J, Jang I, Lee J et al (2005b) A protein domain interaction interface database: InterPare. BMC Bioinform 6:207CrossRefGoogle Scholar
  26. Grad YH, Lipsitch M, Feldgarden M, Arachchi HM, Cerqueira GC, Fitzgerald M et al (2012) Genomic epidemiology of the Escherichia coli O104:H4 outbreaks in Europe, 2011. Proc Natl Acad Sci USA 109(8):3065–3070CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hariprasad G, Kumar M, Kaur P, Singh TP, Kumar RP (2010) Human group III PLA2 as a drug target: structural analysis and inhibitor binding studies. Int J Biol Macromol 47(4):496–501CrossRefPubMedGoogle Scholar
  28. Huang Y, Niu B, Gao Y, Fu L, Li W (2010) CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26(5):680–682CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28(1):27–30CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kim JG, Park D, Kim BC, Cho SW, Kim YT, Park YJ et al (2008) Predicting the interactome of Xanthomonas oryzae pathovar oryzae for target selection and DB service. BMC Bioinform 9:41CrossRefGoogle Scholar
  31. King LA, Nogareda F, Weill FX, Mariani-Kurkdjian P, Loukiadis E, Gault G et al (2012) Outbreak of Shiga toxin-producing Escherichia coli O104:H4 associated with organic fenugreek sprouts, France, June 2011. Clin Infect Dis 54(11):1588–1594CrossRefPubMedGoogle Scholar
  32. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A et al (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041CrossRefPubMedGoogle Scholar
  33. Kumar R, Nanduri B (2010) HPIDB—a unified resource for host–pathogen interactions. BMC Bioinform 11(Suppl 6):S16CrossRefGoogle Scholar
  34. Kumar S, Parvathi A, Hernandez RL, Cadle KM, Varela MF (2009) Identification of a novel UDP-N-acetylglucosamine enolpyruvyl transferase (MurA) from Vibrio fischeri that confers high fosfomycin resistance in Escherichia coli. Arch Microbiol 191(5):425–429CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lavecchia A, Di Giovanni C (2013) Virtual screening strategies in drug discovery: a critical review. Curr Med Chem 20(23):2839–2860CrossRefPubMedGoogle Scholar
  36. Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26CrossRefPubMedGoogle Scholar
  37. Luo Q, Pagel P, Vilne B, Frishman D (2011) DIMA 3.0: Domain Interaction Map. Nucleic Acids Res 39(Database issue):D724–D729CrossRefPubMedGoogle Scholar
  38. Luthy R, Bowie JU, Eisenberg D (1992) Assessment of protein models with three-dimensional profiles. Nature 356(6364):83–85CrossRefPubMedGoogle Scholar
  39. Matthews L, Gopinath G, Gillespie M, Caudy M, Croft D, de Bono B et al (2009) Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res 37(Database issue):D619–D622CrossRefPubMedGoogle Scholar
  40. Michino H, Araki K, Minami S, Takaya S, Sakai N, Miyazaki M et al (1999) Massive outbreak of Escherichia coli O157:H7 infection in schoolchildren in Sakai City, Japan, associated with consumption of white radish sprouts. Am J Epidemiol 150(8):787–796CrossRefPubMedGoogle Scholar
  41. Mondal SI, Khadka B, Akter A, Roy PK, Sultana R (2014) Computer based screening for novel inhibitors against Vibrio cholerae using NCI diversity set-II: an alternative approach by targeting transcriptional activator ToxT. Interdiscip Sci Comput Life Sci 6(2):108–117CrossRefGoogle Scholar
  42. Mondal SI, Ferdous S, Jewel NA, Akter A, Mahmud Z, Islam MM et al (2015) Identification of potential drug targets by subtractive genome analysis of Escherichia coli O157:H7: an in silico approach. Adv Appl Bioinform Chem AABC 8:49–63PubMedGoogle Scholar
  43. Mora A, Herrrera A, Lopez C, Dahbi G, Mamani R, Pita JM et al (2011) Characteristics of the Shiga-toxin-producing enteroaggregative Escherichia coli O104:H4 German outbreak strain and of STEC strains isolated in Spain. Int Microbiol Off J Span Soc Microbiol 14(3):121–141Google Scholar
  44. Moriya Y, Itoh M, Okuda S, Yoshizawa AC, Kanehisa M (2007) KAAS: an automatic genome annotation and pathway reconstruction server. Nucleic Acids Res 35(Web Server issue):W182–W185CrossRefPubMedPubMedCentralGoogle Scholar
  45. Muniesa M, Hammerl JA, Hertwig S, Appel B, Brussow H (2012) Shiga toxin-producing Escherichia coli O104:H4: a new challenge for microbiology. Appl Environ Microbiol 78(12):4065–4073CrossRefPubMedPubMedCentralGoogle Scholar
  46. O’Boyle NM, Banck M, James CA, Morley C, Vandermeersch T, Hutchison GR (2011) Open Babel: an open chemical toolbox. J Cheminformatics 3:33CrossRefGoogle Scholar
  47. Petri WA Jr, Miller M, Binder HJ, Levine MM, Dillingham R, Guerrant RL (2008) Enteric infections, diarrhea, and their impact on function and development. J Clin Invest 118(4):1277–1290CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pontius J, Richelle J, Wodak SJ (1996) Deviations from standard atomic volumes as a quality measure for protein crystal structures. J Mol Biol 264(1):121–136CrossRefPubMedGoogle Scholar
  49. Rajender PS, Vasavi M, Vuruputuri U (2011) Identification of novel selective antagonists for cyclin C by homology modeling and virtual screening. Int J Biol Macromol 48(2):292–300CrossRefPubMedGoogle Scholar
  50. Rao CV, Kirby JR, Arkin AP (2004) Design and diversity in bacterial chemotaxis: a comparative study in Escherichia coli and Bacillus subtilis. PLoS Biol 2(2):E49CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rodrigues JP, Levitt M, Chopra G (2012) KoBaMIN: a knowledge-based minimization web server for protein structure refinement. Nucleic Acids Res 40(Web Server issue):W323–W328CrossRefPubMedPubMedCentralGoogle Scholar
  52. Sakharkar KR, Sakharkar MK, Chow VT (2004) A novel genomics approach for the identification of drug targets in pathogens, with special reference to Pseudomonas aeruginosa. In silico Biol 4(3):355–360PubMedGoogle Scholar
  53. Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D (2004) The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 32(Database issue):D449–D451CrossRefPubMedPubMedCentralGoogle Scholar
  54. Samland AK, Amrhein N, Macheroux P (1999) Lysine 22 in UDP-N-acetylglucosamine enolpyruvyl transferase from Enterobacter cloacae is crucial for enzymatic activity and the formation of covalent adducts with the substrate phosphoenolpyruvate and the antibiotic fosfomycin. Biochemistry 38(40):13162–13169CrossRefPubMedGoogle Scholar
  55. Sliwoski G, Kothiwale S, Meiler J, Lowe EW Jr (2014) Computational methods in drug discovery. Pharmacol Rev 66(1):334–395CrossRefPubMedPubMedCentralGoogle Scholar
  56. Taylor CM, Fischer K, Abubucker S, Wang Z, Martin J, Jiang D et al (2011) Targeting protein–protein interactions for parasite control. PLoS One 6(4):e18381CrossRefPubMedPubMedCentralGoogle Scholar
  57. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461PubMedPubMedCentralGoogle Scholar
  58. Waters JR, Sharp JC, Dev VJ (1994) Infection caused by Escherichia coli O157:H7 in Alberta, Canada, and in Scotland: a five-year review, 1987–1991. Clin Infect Dis 19(5):834–843CrossRefPubMedGoogle Scholar
  59. Wu S, Zhu Z, Fu L, Niu B, Li W (2011) WebMGA: a customizable web server for fast metagenomic sequence analysis. BMC Genom 12:444CrossRefGoogle Scholar
  60. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R et al (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615CrossRefPubMedPubMedCentralGoogle Scholar
  61. Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G (2002) MINT: a Molecular INTeraction database. FEBS Lett 513(1):135–140CrossRefPubMedGoogle Scholar
  62. Zhang R, Lin Y (2009) DEG 5.0, a database of essential genes in both prokaryotes and eukaryotes. Nucleic Acids Res 37(Database issue):D455–D458CrossRefPubMedGoogle Scholar
  63. Zhang R, Ou HY, Zhang CT (2004) DEG: a database of essential genes. Nucleic Acids Res 32(Database issue):D271–D272CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Shakhinur Islam Mondal
    • 1
    • 2
  • Zabed Mahmud
    • 1
  • Montasir Elahi
    • 3
  • Arzuba Akter
    • 2
    • 4
  • Nurnabi Azad Jewel
    • 1
  • Md. Muzahidul Islam
    • 1
  • Sabiha Ferdous
    • 1
  • Taisei Kikuchi
    • 5
  1. 1.Department of Genetic Engineering and BiotechnologyShahjalal University of Science and TechnologySylhetBangladesh
  2. 2.Division of Microbiology, Department of Infectious Diseases, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan
  3. 3.Department of Diagnosis, Prevention and Treatment of DementiaJuntendo University Graduate School of MedicineBunkyōJapan
  4. 4.Department of Biochemistry and Molecular BiologyShahjalal University of Science and TechnologySylhetBangladesh
  5. 5.Division of Parasitology, Faculty of MedicineUniversity of MiyazakiMiyazakiJapan

Personalised recommendations