Skip to main content
Log in

Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review

  • Review article
  • Published:
Journal of Environmental Health Science and Engineering Aims and scope Submit manuscript

Abstract

Landfill leachate contains antibiotic resistance genes (ARGs) and microplastics (MPs), making it an important reservoir. However, little research has been conducted on how ARGs are enriched on MPs and how the presence of MPs affects pathogens and ARGs in leachates and soil. MPs possess the capacity to establish unique bacterial populations and assimilate contaminants from their immediate surroundings, generating a potential environment conducive to the growth of disease-causing microorganisms and antibiotic resistance genes (ARGs), thereby exerting selection pressure. Through a comprehensive analysis of scientific literature, we have carried out a practical assessment of this topic. The gathering of pollutants and the formation of dense bacterial communities on microplastics create advantageous circumstances for an increased frequency of ARG transfer and evolution. Additional investigations are necessary to acquire a more profound comprehension of how pathogens and ARGs are enriched, transported, and transferred on microplastics. This research is essential for evaluating the health risks associated with human exposure to these pollutants.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sun Q, Li J, Wang C, Chen A, You Y, Yang S, et al. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Front Environ Sci Eng. 2022;16(1):1–14.

    Article  Google Scholar 

  2. Akhbarizadeh R, Dobaradaran S, Nabipour I, Tangestani M, Abedi D, Javanfekr F, et al. Abandoned Covid-19 personal protective equipment along the Bushehr shores, the Persian Gulf: an emerging source of secondary microplastics in coastlines. Mar Pollut Bull. 2021;168: 112386.

    Article  CAS  Google Scholar 

  3. Akhbarizadeh R, Dobaradaran S, Torkmahalleh MA, Saeedi R, Aibaghi R, Ghasemi FF. Suspended fine particulate matter (PM2. 5), microplastics (MPs), and polycyclic aromatic hydrocarbons (PAHs) in air: their possible relationships and health implications. Environ Res. 2021;192:110339.

    Article  CAS  Google Scholar 

  4. De-la-Torre GE, Dioses-Salinas DC, Dobaradaran S, Spitz J, Nabipour I, Keshtkar M, et al. Release of phthalate esters (PAEs) and microplastics (MPs) from face masks and gloves during the COVID-19 pandemic. Environ Res. 2022;215: 114337.

    Article  CAS  Google Scholar 

  5. Kashfi FS, Ramavandi B, Arfaeinia H, Mohammadi A, Saeedi R, De-la-Torre GE, et al. Occurrence and exposure assessment of microplastics in indoor dusts of buildings with different applications in Bushehr and Shiraz cities Iran. Sci Total Environ. 2022;829: 154651.

    Article  CAS  Google Scholar 

  6. Rezania S, Park J, Din MFM, Taib SM, Talaiekhozani A, Yadav KK, et al. Microplastics pollution in different aquatic environments and biota: A review of recent studies. Mar Pollut Bull. 2018;133:191–208.

    Article  CAS  Google Scholar 

  7. Takdastan A, Niari MH, Babaei A, Dobaradaran S, Jorfi S, Ahmadi M. Occurrence and distribution of microplastic particles and the concentration of Di 2-ethyl hexyl phthalate (DEHP) in microplastics and wastewater in the wastewater treatment plant. J Environ Manage. 2021;280: 111851.

    Article  CAS  Google Scholar 

  8. Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, et al. Occurrence of microplastics and phthalate esters in urban runoff: a focus on the Persian Gulf coastline. Sci Total Environ. 2022;806: 150559.

    Article  CAS  Google Scholar 

  9. Akhbarizadeh R, Dobaradaran S, Nabipour I, Tajbakhsh S, Darabi AH, Spitz J. Abundance, composition, and potential intake of microplastics in canned fish. Mar Pollut Bull. 2020;160: 111633.

    Article  CAS  Google Scholar 

  10. Schluter J, Nadell CD, Bassler BL, Foster KR. Adhesion as a weapon in microbial competition. ISME J. 2015;9(1):139–49.

    Article  CAS  Google Scholar 

  11. Dobaradaran S, Schmidt TC, Nabipour I, Khajeahmadi N, Tajbakhsh S, Saeedi R, et al. Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste Manage. 2018;78:649–58.

    Article  CAS  Google Scholar 

  12. Delacuvellerie A, Cyriaque V, Gobert S, Benali S, Wattiez R. The plastisphere in marine ecosystem hosts potential specific microbial degraders including Alcanivorax borkumensis as a key player for the low-density polyethylene degradation. J Hazard Mater. 2019;380: 120899.

    Article  CAS  Google Scholar 

  13. Zettler ER, Mincer TJ, Amaral-Zettler LA. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ Sci Technol. 2013;47(13):7137–46.

    Article  CAS  Google Scholar 

  14. De Tender CA, Devriese LI, Haegeman A, Maes S, Ruttink T, Dawyndt P. Bacterial community profiling of plastic litter in the Belgian part of the North Sea. Environ Sci Technol. 2015;49(16):9629–38.

    Article  Google Scholar 

  15. Parrish K, Fahrenfeld N. Microplastic biofilm in fresh-and wastewater as a function of microparticle type and size class. Environ Sci: Water Res Technol. 2019;5(3):495–505.

    CAS  Google Scholar 

  16. McCormick A, Hoellein TJ, Mason SA, Schluep J, Kelly JJ. Microplastic is an abundant and distinct microbial habitat in an urban river. Environ Sci Technol. 2014;48(20):11863–71.

    Article  CAS  Google Scholar 

  17. Yang Y, Liu G, Song W, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.

    Article  CAS  Google Scholar 

  18. Arias-Andres M, Klümper U, Rojas-Jimenez K, Grossart H-P. Microplastic pollution increases gene exchange in aquatic ecosystems. Environ Pollut. 2018;237:253–61.

    Article  CAS  Google Scholar 

  19. Huang Y, Zhao Y, Wang J, Zhang M, Jia W, Qin X. LDPE microplastic films alter microbial community composition and enzymatic activities in soil. Environ Pollut. 2019;254: 112983.

    Article  CAS  Google Scholar 

  20. Shi J, Su Y, Zhang Z, Wei H, Xie B. How do zinc oxide and zero valent iron nanoparticles impact the occurrence of antibiotic resistance genes in landfill leachate? Environ Sci Nano. 2019;6(7):2141–51.

    Article  CAS  Google Scholar 

  21. Hu HW, Wang JT, Li J, Li JJ, Ma YB, Chen D, et al. Field-based evidence for copper contamination induced changes of antibiotic resistance in agricultural soils. Environ Microbiol. 2016;18(11):3896–909.

    Article  CAS  Google Scholar 

  22. Sun M, Ye M, Jiao W, Feng Y, Yu P, Liu M, et al. Changes in tetracycline partitioning and bacteria/phage-comediated ARGs in microplastic-contaminated greenhouse soil facilitated by sophorolipid. J Hazard Mater. 2018;345:131–9.

    Article  CAS  Google Scholar 

  23. Bengtsson-Palme J, Larsson DJ. Antibiotic resistance genes in the environment: prioritizing risks. Nat Rev Microbiol. 2015;13(6):396.

    Article  CAS  Google Scholar 

  24. Li B, Yang Y, Ma L, Ju F, Guo F, Tiedje JM, et al. Metagenomic and network analysis reveal wide distribution and co-occurrence of environmental antibiotic resistance genes. ISME J. 2015;9(11):2490–502.

    Article  CAS  Google Scholar 

  25. Yu X, Sui Q, Lyu S, Zhao W, Liu J, Cai Z, et al. Municipal solid waste landfills: An underestimated source of pharmaceutical and personal care products in the water environment. Environ Sci Technol. 2020;54(16):9757–68.

    Article  CAS  Google Scholar 

  26. Wu D, Sui Q, Yu X, Zhao W, Li Q, Fatta-Kassinos D, et al. Identification of indicator PPCPs in landfill leachates and livestock wastewaters using multi-residue analysis of 70 PPCPs: Analytical method development and application in Yangtze River Delta China. Sci Total Environ. 2021;753: 141653.

    Article  CAS  Google Scholar 

  27. Hou L, Kumar D, Yoo CG, Gitsov I, Majumder EL-W. Conversion and removal strategies for microplastics in wastewater treatment plants and landfills. Chem Eng J. 2021;406:126715.

    Article  CAS  Google Scholar 

  28. Su Y, Zhang Z, Wu D, Zhan L, Shi H, Xie B. Occurrence of microplastics in landfill systems and their fate with landfill age. Water Res. 2019;164: 114968.

    Article  CAS  Google Scholar 

  29. Rochman CM. Microplastics research—from sink to source. Science. 2018;360(6384):28–9.

    Article  CAS  Google Scholar 

  30. Ma J, Sheng GD, O’Connor P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ Pollut. 2020;264: 114689.

    Article  CAS  Google Scholar 

  31. Li Y, Tao L, Wang Q, Wang F, Li G, Song M. Potential Health Impact of Microplastics: A Review of Environmental Distribution, Human Exposure, and Toxic Effects. Environ Health. 2023.

  32. Bhuyan MS. Effects of microplastics on fish and in human health. Front Environ Sci. 2022;10:250.

    Article  Google Scholar 

  33. Campanale C, Massarelli C, Savino I, Locaputo V, Uricchio VF. A detailed review study on potential effects of microplastics and additives of concern on human health. Int J Environ Res Public Health. 2020;17(4):1212.

    Article  CAS  Google Scholar 

  34. Zhao Y, Gao J, Wang Z, Dai H, Wang Y. Responses of bacterial communities and resistance genes on microplastics to antibiotics and heavy metals in sewage environment. J Hazard Mater. 2021;402: 123550.

    Article  CAS  Google Scholar 

  35. Su Y, Zhang Z, Zhu J, Shi J, Wei H, Xie B, et al. Microplastics act as vectors for antibiotic resistance genes in landfill leachate: The enhanced roles of the long-term aging process. Environ Pollut. 2021;270: 116278.

    Article  CAS  Google Scholar 

  36. Shi J, Wu D, Su Y, Xie B. Selective enrichment of antibiotic resistance genes and pathogens on polystyrene microplastics in landfill leachate. Sci Total Environ. 2021;765: 142775.

    Article  CAS  Google Scholar 

  37. Shi J, Wu D, Su Y, Xie B. (Nano) microplastics promote the propagation of antibiotic resistance genes in landfill leachate. Environ Sci Nano. 2020;7(11):3536–46.

    Article  CAS  Google Scholar 

  38. Ding J, Zhu D, Wang Y, Wang H, Liang A, Sun H, et al. Exposure to heavy metal and antibiotic enriches antibiotic resistant genes on the tire particles in soil. Sci Total Environ. 2021;792:148417.

    Article  CAS  Google Scholar 

  39. Ma J, Sheng GD, O’Connor P. Microplastics combined with tetracycline in soils facilitate the formation of antibiotic resistance in the Enchytraeus crypticus microbiome. Environ Pollut. 2020;264: 114689.

    Article  CAS  Google Scholar 

  40. Martínez-Campos S, González-Pleiter M, Fernández-Piñas F, Rosal R, Leganés F. Early and differential bacterial colonization on microplastics deployed into the effluents of wastewater treatment plants. Sci Total Environ. 2021;757: 143832.

    Article  Google Scholar 

  41. Wang W, Ge J, Yu X, Li H. Environmental fate and impacts of microplastics in soil ecosystems: Progress and perspective. Sci Total Environ. 2020;708: 134841.

    Article  CAS  Google Scholar 

  42. Astner AF, Hayes DG, Pingali SV, O’Neill HM, Littrell KC, Evans BR, et al. Effects of soil particles and convective transport on dispersion and aggregation of nanoplastics via small-angle neutron scattering (SANS) and ultra SANS (USANS). PLoS ONE. 2020;15(7): e0235893.

    Article  CAS  Google Scholar 

  43. Rillig MC, Ingraffia R, de Souza Machado AA. Microplastic incorporation into soil in agroecosystems. Front Plant Sci. 2017;8:1805.

    Article  Google Scholar 

  44. Yan X, Yang X, Tang Z, Fu J, Chen F, Zhao Y, et al. Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environ Pollut. 2020;262: 114270.

    Article  CAS  Google Scholar 

  45. Zhang G, Liu Y. The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ. 2018;642:12–20.

    Article  CAS  Google Scholar 

  46. Xu S, Chen X, Zhuang J. Opposite influences of mineral-associated and dissolved organic matter on the transport of hydroxyapatite nanoparticles through soil and aggregates. Environ Res. 2019;171:153–60.

    Article  CAS  Google Scholar 

  47. Lu J, Zheng F, Li G, Bian F, An J. The effects of raindrop impact and runoff detachment on hillslope soil erosion and soil aggregate loss in the Mollisol region of Northeast China. Soil Tillage Res. 2016;161:79–85.

    Article  Google Scholar 

  48. Wang L, Luo X, Xiong X, Chen W, Hao X, Huang Q. Soil aggregate stratification of ureolytic microbiota affects urease activity in an Inceptisol. J Agric Food Chem. 2019;67(42):11584–90.

    Article  CAS  Google Scholar 

  49. Wilpiszeski RL, Aufrecht JA, Retterer ST, Sullivan MB, Graham DE, Pierce EM, et al. Soil aggregate microbial communities: towards understanding microbiome interactions at biologically relevant scales. Appl Environ Microbiol. 2019;85(14):e00324-e419.

    Article  CAS  Google Scholar 

  50. Li L, Luo Y, Li R, Zhou Q, Peijnenburg WJ, Yin N, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode. Nat Sustain. 2020;3(11):929–37.

    Article  Google Scholar 

  51. Zhang Y-J, Hu H-W, Chen Q-L, Singh BK, Yan H, Chen D, et al. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ Int. 2019;130: 104912.

    Article  CAS  Google Scholar 

  52. Rillig MC, Ziersch L, Hempel S. Microplastic transport in soil by earthworms. Sci Rep. 2017;7(1):1–6.

    Article  CAS  Google Scholar 

  53. Rodríguez-Seijo A, Santos B, da Silva EF, Cachada A, Pereira R. Low-density polyethylene microplastics as a source and carriers of agrochemicals to soil and earthworms. Environ Chem. 2018;16(1):8–17.

    Article  Google Scholar 

  54. Ju H, Zhu D, Qiao M. Effects of polyethylene microplastics on the gut microbial community, reproduction and avoidance behaviors of the soil springtail Folsomia candida. Environ Pollut. 2019;247:890–7.

    Article  CAS  Google Scholar 

  55. Zhu D, Chen Q-L, An X-L, Yang X-R, Christie P, Ke X, et al. Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem. 2018;116:302–10.

    Article  CAS  Google Scholar 

  56. Lu XM, Lu PZ, Liu XP. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709: 136276.

    Article  CAS  Google Scholar 

  57. Zhang T, Li X, Wang M, Chen H, Yang Y, Chen Q-L, et al. Time-resolved spread of antibiotic resistance genes in highly polluted air. Environ Int. 2019;127:333–9.

    Article  CAS  Google Scholar 

  58. Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case. Sci Total Environ. 2022;842: 156838.

    Article  CAS  Google Scholar 

  59. Moore-Kucera J, Cox SB, Peyron M, Bailes G, Kinloch K, Karich K, et al. Native soil fungi associated with compostable plastics in three contrasting agricultural settings. Appl Microbiol Biotechnol. 2014;98(14):6467–85.

    Article  CAS  Google Scholar 

  60. Zhelezova A, Zverev A, Zueva A, Leonov V, Rozanova O, Zuev A, et al. Prokaryotic community formation on polyethylene films incubated for six months in a tropical soil. Environ Pollut. 2021;269: 116126.

    Article  CAS  Google Scholar 

  61. Yi M, Zhou S, Zhang L, Ding S. The effects of three different microplastics on enzyme activities and microbial communities in soil. Water Environ Res. 2021;93(1):24–32.

    Article  CAS  Google Scholar 

  62. Jacquin J, Cheng J, Odobel C, Pandin C, Conan P, Pujo-Pay M, et al. Microbial ecotoxicology of marine plastic debris: a review on colonization and biodegradation by the “plastisphere.” Front Microbiol. 2019;10:865.

    Article  Google Scholar 

  63. Huerta Lwanga E, Gertsen H, Gooren H, Peters P, Salánki T, Van Der Ploeg M, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol. 2016;50(5):2685–91.

    Article  CAS  Google Scholar 

  64. Zhang J, Gao D, Li Q, Zhao Y, Li L, Lin H, et al. Biodegradation of polyethylene microplastic particles by the fungus Aspergillus flavus from the guts of wax moth Galleria mellonella. Sci Total Environ. 2020;704: 135931.

    Article  CAS  Google Scholar 

  65. Imran M, Das KR, Naik MM. Co-selection of multi-antibiotic resistance in bacterial pathogens in metal and microplastic contaminated environments: An emerging health threat. Chemosphere. 2019;215:846–57.

    Article  CAS  Google Scholar 

  66. Parthasarathy A, Tyler AC, Hoffman MJ, Savka MA, Hudson AO. Is plastic pollution in aquatic and terrestrial environments a driver for the transmission of pathogens and the evolution of antibiotic resistance? : ACS Publications; 2019.

  67. Bank MS, Ok YS, Swarzenski PW. Microplastic’s role in antibiotic resistance. Science. 2020;369(6509):1315.

    Article  Google Scholar 

  68. Lu X-M, Lu P-Z, Liu X-P. Fate and abundance of antibiotic resistance genes on microplastics in facility vegetable soil. Sci Total Environ. 2020;709: 136276.

    Article  CAS  Google Scholar 

  69. Ya H, Jiang B, Xing Y, Zhang T, Lv M, Wang X. Recent advances on ecological effects of microplastics on soil environment. Sci Total Environ. 2021;798:149338.

    Article  CAS  Google Scholar 

  70. Guo J-J, Huang X-P, Xiang L, Wang Y-Z, Li Y-W, Li H, et al. Source, migration and toxicology of microplastics in soil. Environ Int. 2020;137: 105263.

    Article  CAS  Google Scholar 

  71. Yang Y, Liu G, Song W, Ye C, Lin H, Li Z, et al. Plastics in the marine environment are reservoirs for antibiotic and metal resistance genes. Environ Int. 2019;123:79–86.

    Article  CAS  Google Scholar 

  72. Lagana P, Caruso G, Corsi I, Bergami E, Venuti V, Majolino D, et al. Do plastics serve as a possible vector for the spread of antibiotic resistance? First insights from bacteria associated to a polystyrene piece from King George Island (Antarctica). Int J Hyg Environ Health. 2019;222(1):89–100.

    Article  CAS  Google Scholar 

  73. Zhang Y, Lu J, Wu J, Wang J, Luo Y. Potential risks of microplastics combined with superbugs: Enrichment of antibiotic resistant bacteria on the surface of microplastics in mariculture system. Ecotoxicol Environ Saf. 2020;187:109852.

    Article  CAS  Google Scholar 

  74. Gong M, Yang G, Zhuang L, Zeng EY. Microbial biofilm formation and community structure on low-density polyethylene microparticles in lake water microcosms. Environ Pollut. 2019;252:94–102.

    Article  CAS  Google Scholar 

  75. Wu X, Pan J, Li M, Li Y, Bartlam M, Wang Y. Selective enrichment of bacterial pathogens by microplastic biofilm. Water Res. 2019;165: 114979.

    Article  CAS  Google Scholar 

  76. Li B, Qiu Y, Song Y, Lin H, Yin H. Dissecting horizontal and vertical gene transfer of antibiotic resistance plasmid in bacterial community using microfluidics. Environ Int. 2019;131: 105007.

    Article  CAS  Google Scholar 

  77. Dussud C, Meistertzheim A, Conan P, Pujo-Pay M, George M, Fabre P, et al. Evidence of niche partitioning among bacteria living on plastics, organic particles and surrounding seawaters. Environ Pollut. 2018;236:807–16.

    Article  CAS  Google Scholar 

  78. Lu J, Zhang Y, Wu J, Luo Y. Effects of microplastics on distribution of antibiotic resistance genes in recirculating aquaculture system. Ecotoxicol Environ Saf. 2019;184: 109631.

    Article  CAS  Google Scholar 

  79. Yu X, Zhou Z-C, Shuai X-Y, Lin Z-J, Liu Z, Zhou J-Y, et al. Microplastics exacerbate co-occurrence and horizontal transfer of antibiotic resistance genes. J Hazard Mater. 2023;451:131130.

    Article  CAS  Google Scholar 

  80. Gouin T. Addressing the importance of microplastic particles as vectors for long-range transport of chemical contaminants: perspective in relation to prioritizing research and regulatory actions. Microplastics and Nanoplastics. 2021;1(1):14.

    Article  Google Scholar 

  81. Joo SH, Liang Y, Kim M, Byun J, Choi H. Microplastics with adsorbed contaminants: Mechanisms and Treatment. Environmental Challenges. 2021;3: 100042.

    Article  CAS  Google Scholar 

  82. Larsson DJ, Flach C-F. Antibiotic resistance in the environment. Nat Rev Microbiol. 2022;20(5):257–69.

    Article  CAS  Google Scholar 

  83. Vats P, Kaur UJ, Rishi P. Heavy metal-induced selection and proliferation of antibiotic resistance: A review. J Appl Microbiol. 2022;132(6):4058–76.

    Article  Google Scholar 

  84. Baker-Austin C, Wright MS, Stepanauskas R, McArthur J. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006;14(4):176–82.

    Article  CAS  Google Scholar 

  85. Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol. 2012;3:399.

    Article  Google Scholar 

  86. Frère L, Maignien L, Chalopin M, Huvet A, Rinnert E, Morrison H, et al. Microplastic bacterial communities in the Bay of Brest: Influence of polymer type and size. Environ Pollut. 2018;242:614–25.

    Article  Google Scholar 

  87. Oberbeckmann S, Loeder MG, Gerdts G, Osborn AM. Spatial and seasonal variation in diversity and structure of microbial biofilms on marine plastics in Northern European waters. FEMS Microbiol Ecol. 2014;90(2):478–92.

    Article  CAS  Google Scholar 

  88. Khatmullina L, Bagaev A, Chubarenko I, editors. Microplastics in the Baltic Sea water: fibers everywhere. EGU General Assembly Conference Abstracts; 2017.

  89. Keswani A, Oliver DM, Gutierrez T, Quilliam RS. Microbial hitchhikers on marine plastic debris: human exposure risks at bathing waters and beach environments. Mar Environ Res. 2016;118:10–9.

    Article  CAS  Google Scholar 

  90. Goldstein MC, Carson HS, Eriksen M. Relationship of diversity and habitat area in North Pacific plastic-associated rafting communities. Mar Biol. 2014;161(6):1441–53.

    Article  Google Scholar 

  91. Kirstein IV, Kirmizi S, Wichels A, Garin-Fernandez A, Erler R, Löder M, et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar Environ Res. 2016;120:1–8.

    Article  CAS  Google Scholar 

  92. Broszat M, Grohmann E. Horizontal gene transfer in planktonic and biofilm modes. Antibiofilm Agents. Berlin: Springer; 2014. p. 67–95.

    Google Scholar 

  93. Karkman A, Do TT, Walsh F, Virta MP. Antibiotic-resistance genes in waste water. Trends Microbiol. 2018;26(3):220–8.

    Article  CAS  Google Scholar 

  94. Bloom G, Merrett GB, Wilkinson A, Lin V, Paulin S. Antimicrobial resistance and universal health coverage. BMJ Glob Health. 2017;2(4): e000518.

    Article  Google Scholar 

  95. Shen M, Zhu Y, Zhang Y, Zeng G, Wen X, Yi H, et al. Micro (nano) plastics: Unignorable vectors for organisms. Mar Pollut Bull. 2019;139:328–31.

    Article  CAS  Google Scholar 

  96. Amelia TSM, Khalik WMAWM, Ong MC, Shao YT, Pan H-J, Bhubalan K. Marine microplastics as vectors of major ocean pollutants and its hazards to the marine ecosystem and humans. Progr Earth Planet Sci. 2021;8(1):1–26.

    Article  Google Scholar 

  97. Agboola OD, Benson NU. Physisorption and chemisorption mechanisms influencing micro (nano) plastics-organic chemical contaminants interactions: a review. Front Environ Sci. 2021;9:167.

    Article  Google Scholar 

  98. Wojnowska-Baryła I, Bernat K, Zaborowska M. Plastic waste degradation in landfill conditions: the problem with microplastics, and their direct and indirect environmental effects. Int J Environ Res Public Health. 2022;19(20):13223.

    Article  Google Scholar 

  99. O’Kelly BC, El-Zein A, Liu X, Patel A, Fei X, Sharma S, et al. Microplastics in soils: an environmental geotechnics perspective. Environmental Geotechnics. 2021;8(8):586–618.

    Article  Google Scholar 

  100. Silva AL, Prata JC, Duarte AC, Soares AM, Barceló D, Rocha-Santos T. Microplastics in landfill leachates: The need for reconnaissance studies and remediation technologies. Case Stud Chem Environ Eng. 2021;3:100072.

    Article  CAS  Google Scholar 

  101. Singh S, Malyan SK, Maithani C, Kashyap S, Tyagi VK, Singh R, et al. Microplastics in landfill leachate: Occurrence, health concerns, and removal strategies. J Environ Manage. 2023;342:118220.

    Article  CAS  Google Scholar 

  102. Kabir MS, Wang H, Luster-Teasley S, Zhang L, Zhao R. Microplastics in landfill leachate: Sources, detection, occurrence, and removal. Environ Sci Ecotechnol. 2023;16:100256.

    Article  CAS  Google Scholar 

  103. Kaneesamkandi Z, Rehman AU, Usmani YS, Umer U. Methodology for assessment of alternative waste treatment strategies using entropy weights. Sustainability. 2020;12(16):6689.

    Article  Google Scholar 

  104. Chen J, Wu J, Sherrell PC, Chen J, Wang H, Wx Zhang, et al. How to build a microplastics-free environment: strategies for microplastics degradation and plastics recycling. Adv Sci. 2022;9(6):2103764.

    Article  Google Scholar 

  105. Shen M, Song B, Zeng G, Zhang Y, Huang W, Wen X, et al. Are biodegradable plastics a promising solution to solve the global plastic pollution? Environ Pollut. 2020;263: 114469.

    Article  CAS  Google Scholar 

  106. Shruti V, Kutralam-Muniasamy G. Bioplastics: Missing link in the era of Microplastics. Sci Total Environ. 2019;697: 134139.

    Article  CAS  Google Scholar 

  107. Du S, Shen J-P, Hu H-W, Wang J-T, Han L-L, Sheng R, et al. Large-scale patterns of soil antibiotic resistome in Chinese croplands. Sci Total Environ. 2020;712: 136418.

    Article  CAS  Google Scholar 

  108. Amarasiri M, Sano D, Suzuki S. Understanding human health risks caused by antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARG) in water environments: Current knowledge and questions to be answered. Crit Rev Environ Sci Technol. 2020;50(19):2016–59.

    Article  CAS  Google Scholar 

  109. Schwarz AE, Ligthart TN, Boukris E, Van Harmelen T. Sources, transport, and accumulation of different types of plastic litter in aquatic environments: a review study. Mar Pollut Bull. 2019;143:92–100.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We extend our gratitude to the Ahvaz Jundishapur University of Medical Sciences for their valuable support.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nastaran Talepour.

Ethics declarations

Competing interest

The authors declare that they have no competing financial interests or personal relationships that could influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaafarzadeh, N., Talepour, N. Microplastics as carriers of antibiotic resistance genes and pathogens in municipal solid waste (MSW) landfill leachate and soil: a review. J Environ Health Sci Engineer (2023). https://doi.org/10.1007/s40201-023-00879-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40201-023-00879-6

Keywords

Navigation