Skip to main content
Log in

Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Objective

The current study evaluates the effect of metformin (MET) and /or alpha lipoic acid (ALA) on hypothyroidism and its adverse effects on the cardiac, renal, and, hepatic functions in rats.

Materials and methods

Rats were divided into five groups: control, rat model of hypothyroidism induced by propylthiouracil (PTU), rat model of hypothyroidism treated with MET, rat model of hypothyroidism treated with ALA, and rat model of hypothyroidism treated with MET and ALA. At the end of the experiment, body weight gain was determined and the blood samples were collected from orbital plexus to measure the serum levels of thyroxine (T4), triiodothyronine (T3) and thyroid stimulating hormone (TSH) by ELISA, glucose level, the activities of lactate dehydrogenase (LDH), creatine kinase MB (CK-MB), aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP), and the levels of urea and creatinine spectrophotometrically.

Results

Rat model of hypothyroidism revealed a significant decrease in T4 (p < 0.001) and T3 (p < 0.001) and a significant increase in TSH (p < 0.005). This was accompanied by a significant decrease in the body weight gain (p < 0.025) and a significant increase in LDH (p < 0.001), CK-MB (p < 0.001) AST (p < 0.01), ALT (p < 0.016), ALP (p < 0.001), glucose (p < 0.001), urea (p < 0.001) and creatinine (p < 0.001). MET restored T4, T3 and TSH to control values. Treatment with ALA restored T3 and TSH levels. Treatment with Met and /or ALA reduced the levels of glucose, urea and creatinine and the activities of LDH, CK-MB, AST, ALT, and ALP to control-like values. Only ALA improved the reduced body weight gain induced by hypothyroidism.

Conclusion

The present findings indicate the ameliorative effects of MET and /or ALA on hypothyroidism and its adverse effects on cardiac, renal and hepatic functions.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vanderpump MP. The epidemiology of thyroid disease. Br Med Bull. 2011;99:39–51.

    Article  PubMed  Google Scholar 

  2. Siriweera EH, Ratnatunga NV. Profile of Hashimoto’s Thyroiditis in Sri Lankans: Is There an Increased Risk of Ancillary Pathologies in Hashimoto’s Thyroiditis? J Thyroid Res. 2010;124264. https://doi.org/10.4061/2010/124264.

  3. Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202–11.

    Article  CAS  PubMed  Google Scholar 

  4. Warner A, Mittag J. Thyroid hormone and the central control of homeostasis. J Mol Endocrinol. 2012;49(1):R29-35.

    Article  CAS  PubMed  Google Scholar 

  5. Kim B. Thyroid hormone as a determinant of energy expenditure and the basal metabolic rate. Thyroid. 2008;8:141–4.

    Article  Google Scholar 

  6. Mullur R, Liu YY, Brent GA. Thyroid hormone regulation of metabolism. Physiol Rev. 2014;94(2):355–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Udovcic M, Pena RH, Patham B, Tabatabai L, Kansara A. Hypothyroidism and the Heart. Methodist Debakey Cardiovasc J. 2017;13(2):55–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lonardo A, Ballestri S, Mantovani A, Nascimbeni F, Lugari S, Targher G. Pathogenesis of hypothyroidism-induced NAFLD: Evidence for a distinct disease entity? Dig. Liver Dis. 2019;51(4):462–70.

    Article  CAS  Google Scholar 

  9. Punekar P, Sharma AK, Jain A. A study of thyroid dysfunction in cirrhosis of liver and correlation with severity of liver disease. Indian J Endocrinol Metab. 2018;22(5):645–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Iglesias P, Díez JJ. Thyroid dysfunction and kidney disease. Eur J Endocrinol. 2009;160(4):503–315.

    Article  CAS  PubMed  Google Scholar 

  11. Zhou G, Myers R, Li Y, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest. 2001;108:1167–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Distiller LA, Polakow ES, Joffe BI. Type 2 diabetes mellitus and hypothyroidism: the possible influence of metformin therapy. Diabet Med. 2014;31:172–5.

    Article  CAS  PubMed  Google Scholar 

  13. Chau-Van C, Gamba M, Salvi R, Gaillard RC, Pralong FP. Metformin inhibits adenosine 5ʹ-monophosphate-activated kinase activation and prevents increases in neuropeptide Y expression in cultured hypothalamic neurons. Endocrinology. 2007;148:507–11.

    Article  CAS  PubMed  Google Scholar 

  14. Krysiak R, Okopien B. The effect of metformin on the hypothalamic-pituitary-thyroid axis in women with polycystic ovary syndrome and subclinical hypothyroidism. J Clin Pharmacol. 2015;55:45–9.

    Article  CAS  PubMed  Google Scholar 

  15. Loi H, Boal F, Tronchere H, Cinato M, Kramar S, Oleshchuk O, Korda M, Kunduzova O. Metformin Protects the Heart Against Hypertrophic and Apoptotic Remodeling After Myocardial Infarction. Front Pharmacol. 2019;10:154. https://doi.org/10.3389/fphar.2019.00154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ravindran S, Kuruvilla V, Wilbur K, Munusamy S. Nephroprotective effects of metformin in diabetic nephropathy. J Cell Physiol. 2017;232(4):731–42.

    Article  CAS  PubMed  Google Scholar 

  17. Abdel Monem MS, Farid SF, Abbassi MM, Youssry I, Andraues NG, Hassany M, Selim YMM, El-Sayed MH. The potential hepatoprotective effect of metformin in hepatitis C virus-infected adolescent patients with beta thalassemia major: Randomised clinical trial. Int J Clin Pract. 2021;75(6):e14104. https://doi.org/10.1111/ijcp.14104.

    Article  CAS  PubMed  Google Scholar 

  18. El Messaoudi S, Rongen GA, de Boer RA, Riksen NP. The cardioprotective effects of metformin. Curr Opin Lipidol. 2011;22:445–53.

    Article  PubMed  Google Scholar 

  19. Carreau JP. Biosynthesis of lipoic acid via unsaturated fatty acids. Methods Enzymol. 1979;62:152–8.

    Article  CAS  PubMed  Google Scholar 

  20. Maglione E, Marrese C, Migliaro E, Marcuccio F, Panico C, Salvati C, Citro G, Quercio M, Roncagliolo F, Torello C, et al. Increasing bioavailability of (R)-alpha-lipoic acid to boost antioxidant activity in the treatment of neuropathic pain. Acta Bio-Medica Atenei Parm. 2015;86:226–33.

    Google Scholar 

  21. Konrad D, Somwar R, Sweeney G, Yaworsky K, Hayashi M, Ramlal T, Klip A. The antihyperglycemic drug alpha-lipoic acid stimulates glucose uptake via both GLUT4 translocation and GLUT4 activation: Potential role of p38 mitogen-activated protein kinase in GLUT4 activation. Diabetes. 2001;50:1464–71.

    Article  CAS  PubMed  Google Scholar 

  22. Chen WL, Kang CH, Wang SG, Lee HM. α-Lipoic acid regulates lipid metabolism through induction of sirtuin 1 (SIRT1) and activation of AMP-activated protein kinase. Diabetologia. 2012;55:1824–35.

    Article  CAS  PubMed  Google Scholar 

  23. Tanaka T, Masubuchi Y, Okada R, Nakajima K, Nakamura K, Masuda S, Nakahara J, Maronpot RR, Yoshida T, Koyanagi M, Hayashi SM, Shibutani M. Ameliorating effect of postweaning exposure to antioxidant on disruption of hippocampal neurogenesis induced by developmental hypothyroidism in rats. J Toxicol Sci. 2019;44(5):357–72.

    Article  CAS  PubMed  Google Scholar 

  24. Alkalby JMA, Alzerjawi SJS. Effect of propylthiouracil-induced hypothyroidism on reproductive effeciency of adult male rats. Bas J Vet Res. 2013;12:113–21.

    Article  Google Scholar 

  25. Abulfadle KA, Abozaid ER, Abdul Rahman MM. Thyroid function changes in a rat model of vitamin D deficiency and effect of vitamin D and metformin treatment. Med J Cairo Univ. 2020;88:481–94.

    Article  Google Scholar 

  26. Baki AM, Aydın AF, Vural P, Olgaç V, Doğru Abbasoğlu S, Uysal M. α-Lipoic Acid Ameliorates the changes in prooxidant-antioxidant balance in liver and brain tissues of propylthiouracil-induced hypothyroid rats. Cell J. 2020;22(Suppl 1):117–24.

    PubMed  PubMed Central  Google Scholar 

  27. Trinder P. Determination of blood glucose using an oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol. 1969;22(2):158–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bais R, Philcox M. IFCC methods for the measurement of catalytic concentration of enzymes. Part 8. IFCC method for lactate dehydrogenase (L-lactate: NAD oxidoreductase, EC 1.1.1.27). J Automat Chem. 1994;6(5):167–82.

    Article  Google Scholar 

  29. Hørder M, Jørgensen PJ, Hafkenscheid JC, Carstensen CA, Bachmann C, Bauer K, Neuwald C, Rosalki SB, Foo AY, Vogt W. Creatine kinase determination: a European evaluation of the creatine kinase determination in serum, plasma and whole blood with the Reflotron system. Eur J Clin Chem Clin Biochem. 1991;29(10):691–296.

    PubMed  Google Scholar 

  30. Reitman S, Frankel S. A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol. 1957;28(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  31. Belfield A, Goldberg DM. Normal ranges and diagnostic value of serum 5’nucleotidase and alkaline phosphatase activities in infancy. Arch Dis Child. 1971;46(250):842–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Fawcett JK, Scott JE. A rapid and precise method for the determination of urea. J Clin Pathol. 1960;13(2):156–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Schirmeister j, Willmann H, Kiefer H. Critical evaluation of plasma creatinine as a test of glomerulus filtrate. Verhdtschges Inn Med. 1964;70:678–81.

    CAS  Google Scholar 

  34. Hassan I, El-Masri H, Kosian PA, Ford J, Degitz SJ, Gilbert ME. Neurodevelopment and thyroid hormone synthesis inhibition in the rat: Quantitative understanding within the adverse outcome pathway framework. Toxicol Sci. 2017;160(1):57–73.

    Article  CAS  PubMed  Google Scholar 

  35. Taurog A, Dorris ML, Doerge DR. Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch Biochem Biophys. 1996;330(1):24–32.

    Article  CAS  PubMed  Google Scholar 

  36. Cooper DS. Antithyroid drugs. N Engl J Med. 2005;352:905–17.

    Article  CAS  PubMed  Google Scholar 

  37. Singh S, Panda VSS, Dande P. Protective effect of a polyherbal bioactive fraction in propylthiouracil-induced thyroid toxicity in rats by modulation of the hypothalamic-pituitary-thyroid and hypothalamic-pituitary-adrenal axes. Toxicol Rep. 2020;7:730–42.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23(1):38–89.

    Article  CAS  PubMed  Google Scholar 

  39. Xu QY, Wang XL, Peng YF. Hypothyroidism induced by propylthiouracil decrease sirtuin1 content in rat heart. J Lab Precis Med. 2017;2:67.

    Article  Google Scholar 

  40. Cakic-Milosevic M, Korac A, Davidovic V. Methimazole-induced hypothyroidism in rats: Effects on body weight and histological characteristics of thyroid gland. Jugoslov Med Biohem. 2004;23:143–7.

    Article  Google Scholar 

  41. Lin MT, Chu PC, Leu SY. Effects of TSH, TRH, LH and LHRH on thermoregulation and food and water intake in the rat. Neuroendocrinology. 1983;37(3):206–11.

    Article  CAS  PubMed  Google Scholar 

  42. Iossa S, Lionetti L, Mollica MP, Crescenzo R, Barletta A, Liverini G. Fat balance and serum leptin concentrations in normal, hypothyroid, and hyperthyroid rats. Int J Obes Relat Metab Disord. 2001;25(3):417–25.

    Article  CAS  PubMed  Google Scholar 

  43. Moeller LC, Dumitrescu AM, Refetoff S. Cytosolic action of thyroid hormone leads to induction of hypoxia-inducible factor‐1alpha and glycolytic genes. Mol Endocrinol Baltim Md. 2005;19:2955–63.

    Article  CAS  Google Scholar 

  44. Potenza M, Via MA, Yanagisawa RT. Excess thyroid hormone and carbohydrate metabolism. Endocr Pract. 2009;15:254–62.

    Article  PubMed  Google Scholar 

  45. Falzacappa CV, Panacchia L, Bucci B, Stigliano A, Cavallo MG, Brunetti E, Toscano V, Misiti S. 3,5,3′ Triiodothyronine (T3) is a survival factor for pancreatic beta cells undergoing apoptosis. J Cell Physiol. 2006;206:309–21.

    Article  CAS  Google Scholar 

  46. Derbali A, Mnafgui K, Affes M, et al. Cardioprotective effect of linseed oil against isoproterenol-induced myocardial infarction in Wistar rats: a biochemical and electrocardiographic study. J Physiol Biochem. 2015;71:281–8.

    Article  CAS  PubMed  Google Scholar 

  47. Karlsberg RP, Friscia DA, Aronow WS, Sekhon SS. Deleterious influence of hypothyroidism on evolving myocardial infarction in conscious dogs. J Clin Invest. 1981;67:1024–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iglesias P, Bajo MA, Selgas R, Díez JJ. Thyroid dysfunction and kidney disease: An update. Rev Endocr Metab Disord. 2017;8(1):131–44.

    Article  Google Scholar 

  49. Luongo C, Trivisano L, Alfano F, Salvatore D. Type 3 deiodinase and consumptive hypothyroidism: a common mechanism for a rare disease. Front Endocrinol (Lausanne). 2013;44:115.

    Google Scholar 

  50. Segermann J, Hotze A, Ulrich H, Rao GS. Effect of alpha-lipoic acid on the peripheral conversion of thyroxine to triiodothyronine and on serum lipid-, protein- and glucose levels. Arzneimittelforschung. 1991;41:1294–8.

    CAS  PubMed  Google Scholar 

  51. Chen K, Yan B, Wang F, Wen F, Xing X, Tang X, Shi Y, Le G. Type 1 5’-deiodinase activity is inhibited by oxidative stress and restored by alpha-lipoic acid in HepG2 cells. Biochem Biophys Res Commun. 2016;472(3):496–501.

    Article  CAS  PubMed  Google Scholar 

  52. Luongo C, Dentice M, Salvatore D. Deiodinases and their intricate role in thyroid hormone homeostasis. Nat Rev Endocrinol. 2019;15(8):479–88.

    Article  PubMed  Google Scholar 

  53. Hiller S, DeKroon R, Hamlett ED, Xu L, Osorio C, Robinette J, et al. Alpha-lipoic acid supplementation protects enzymes from damage by nitrosative and oxidative stress. Biochim Biophys Acta. 2016;1860:36–45.

    Article  CAS  PubMed  Google Scholar 

  54. Oh SK, Yun KH, Yoo NJ, et al. Cardioprotective effects of alpha-lipoic Acid on myocardial reperfusion injury: suppression of reactive oxygen species generation and activation of mitogen-activated protein kinase. K C J. 2009;39:359–66.

    CAS  Google Scholar 

  55. Pop C, Ștefan MG, Muntean DM, Stoicescu L, Gal AF, Kiss B, Morgovan C, Loghin F, Rochette L, Lauzier B, Mogoșan C, Ghibu S. Protective effects of a discontinuous treatment with alpha-lipoic acid in obesity-related heart failure with preserved ejection fraction, in rats. Antioxid (Basel). 2020;9:1073.

    Article  CAS  Google Scholar 

  56. Hu X, Liu Y, Wang C, Hou L, Zheng X, Xu Y, Ding L, Pang S. Metformin affects thyroid function in male rats. Oncotarget. 2017;64:107589–95.

    Article  Google Scholar 

  57. Abdulrahman RM, Boon MR, Sips HC, Guigas B, Rensen PC, Smit JW, Hovens GC. Impact of Metformin and compound C on NIS expression and iodine uptake in vitro and in vivo: a role for CRE in AMPK modulation of thyroid function. Thyroid. 2014;24(1):78–87.

    Article  CAS  PubMed  Google Scholar 

  58. Duan Y, Zhang R, Zhang M, Sun L, Dong S, Wang G, Zhang J, Zhao Z. Metformin inhibits food intake and neuropeptide Y gene expression in the hypothalamus. Neural Regen Res. 2013;8(25):2379–88.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Derkach KV, Sukhov IB, Bondareva VM, Shpakov AO. The effect of Metformin on metabolic parameters and hypothalamic signaling systems in rats with obesity induced by a high-carbohydrate/high-fat diet. Adv Gerontol. 2018;31(1):139–46.

    CAS  PubMed  Google Scholar 

  60. Sun T, Liu J, Xie C, Yang J, Zhao L, Yang J. Metformin attenuates diabetic renal injury via the AMPK-autophagy axis. Exp Ther Med. 2021;21(6):578. https://doi.org/10.3892/etm.2021.10010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kawanami D, Takashi Y, Tanabe M. Significance of metformin use in diabetic kidney disease. Int J Mol Sci. 2020;21:4239.

    Article  CAS  PubMed Central  Google Scholar 

  62. Dai J, Liu M, Ai Q, Lin L, Wu K, Deng X, Jing Y, Jia M, Wan J, Zhang L. Involvement of catalase in the protective benefits of metformin in mice with oxidative liver injury. Chem Biol Interact. 2014;216:34–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasser A. Khadrawy.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 13.0 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khoder, N.M., Sawie, H.G., Sharada, H.M. et al. Metformin and alpha lipoic acid ameliorate hypothyroidism and its complications in adult male rats. J Diabetes Metab Disord 21, 1327–1337 (2022). https://doi.org/10.1007/s40200-022-01063-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-022-01063-7

Keywords

Navigation