Skip to main content

Advertisement

Log in

Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus

  • Review article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Diabetes mellitus is a metabolic syndrome characterized by a hyperglycemic state and multi-organ failure. Millions of people worldwide are suffering from this deadly disease taking a hit on their pocket and mental health in the name of its treatment. Modern medical practices with new technological advancements and discoveries have made revolutionary changes in the treatment. But, unfortunately, Glucose-lowering drugs used have many accompanying effects such as chronic vascular disease, renal malfunction, liver disease and, many skin problems. These complications have made us think about alternative treatments for diabetes with minimum or no side effects. Nowadays, in addition to modern medicine, herbal treatment has been suggested to treat diabetes mellitus. These herbal medicines contain biological macromolecules such as flavonoids, Terpenoids, glycosides, and alkaloids, which show versatile anti-diabetic effects. These phytochemicals are generally considered safe, and naturally occurring compounds have a potential role in preventing or controlling diabetes mellitus. The underlying mechanism of their anti-diabetic effects includes improvement in insulin secretion, decrease in insulin resistance, enhanced liver glycogen synthesis, antioxidant and anti-inflammatory activities. In this review, we have focused on the mechanism of various phytochemicals targeting hyperglycemia and its underlying pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Afrisham R, Aberomand M, Ghaffari MA, Siahpoosh A, Jamalan M. Inhibitory Effect of Heracleum persicum and Ziziphus jujuba on Activity of Alpha-Amylase. 2015. https://doi.org/10.1155/2015/824683.

  2. Bahadori MB, Salehi P, Sonboli A. Comparative study of the essential oil composition of Salvia urmiensis and its enzyme inhibitory activities linked to diabetes mellitus and Alzheimer’s disease. Int J Food Prop. 2017;20(12):2974–81. https://doi.org/10.1080/10942912.2016.1263862.

    Article  CAS  Google Scholar 

  3. Baker, R. G., Hayden, M. S., & Ghosh, S. (2011). NF-κB, inflammation, and metabolic disease. In Cell Metabolism (Vol. 13, Issue 1, pp. 11–22). Cell Press. https://doi.org/10.1016/j.cmet.2010.12.008.

  4. Butkowski EG, Jelinek HF. Hyperglycaemia, oxidative stress and inflammatory markers. Redox Rep. 2017;22(6):257–64. https://doi.org/10.1080/13510002.2016.1215643.

    Article  CAS  PubMed  Google Scholar 

  5. Cancello R, Henegar C, Viguerie N, Taleb S, Poitou C, Rouault C, Coupaye M, Pelloux V, Hugol D, Bouillot JL, Bouloumié A, Barbatelli G, Cinti S, Svensson PA, Barsh GS, Zucker JD, Basdevant A, Langin D, Clément K. Reduction of macrophage infiltration and chemoattractant gene expression changes in white adipose tissue of morbidly obese subjects after surgery-induced weight loss. Diabetes. 2005;54(8):2277–86. https://doi.org/10.2337/diabetes.54.8.2277.

    Article  CAS  PubMed  Google Scholar 

  6. Chang CI, Chou CH, Liao MH, Chen TM, Cheng CH, Anggriani R, Tsai CP, Tseng HI, Cheng HL. Bitter melon triterpenes work as insulin sensitizers and insulin substitutes in insulin-resistant cells. J Funct Foods. 2015;13:214–24. https://doi.org/10.1016/j.jff.2014.12.050.

    Article  CAS  Google Scholar 

  7. Chawla A, Nguyen KD, Goh YPS. Macrophage-mediated inflammation in metabolic disease. Nat Rev Immunol. 2011;11(11):738–49. https://doi.org/10.1038/nri3071.

  8. Chen Q, Bin, Xin XL, Yang Y, Lee SS, Aisa HA. Highly conjugated norditerpenoid and pyrroloquinoline alkaloids with potent ptp1b inhibitory activity from nigella glandulifera. J Nat Prod. 2014;77(4):807–12. https://doi.org/10.1021/np4009078.

    Article  CAS  PubMed  Google Scholar 

  9. Chen J, Wu Y, Zou J, Gao K. α-Glucosidase inhibition and antihyperglycemic activity of flavonoids from Ampelopsis grossedentata and the flavonoid derivatives. Bioorg Med Chem. 2016;24(7):1488–94. https://doi.org/10.1016/j.bmc.2016.02.018.

    Article  CAS  PubMed  Google Scholar 

  10. Chen Y, Qiao F, Zhao Y, Wang Y, Liu G. HMGB1 is activated in type 2 diabetes mellitus patients and in mesangial cells in response to high glucose. Int J Clin Exp Pathol. 2015;8(6):6683–91.

    PubMed  PubMed Central  Google Scholar 

  11. Chinetti-Gbaguidi G, Staels B.. Macrophage polarization in metabolic disorders: Functions and regulation. Curr Opin Lipidol. 2011;22(5):365–372. Inserm. https://doi.org/10.1097/MOL.0b013e32834a77b4.

  12. Chiquette E, Chilton R. Cardiovascular disease: much more aggressive in patients with type 2 diabetes. Curr Atheroscler Rep. 2002;4(2);34–142. Springer. https://doi.org/10.1007/s11883-002-0037-z.

  13. Dange SV, Dange SV, Shende SS, Rane BT, Tilak AV, Vaidya MU, Limaye MV. An observational study of the antidiabetic activity of berberine in newly diagnosed type 2 diabetes mellitus patients. J Pharm Biomed Sci. 2016;6(4). http://www.lawarencepress.com/ojs/index.php/JPBMS/article/view/88.

  14. Das A, Mukhopadhyay S. The evil axis of obesity, inflammation and type-2 diabetes. Endocr Metab Immune Disord Drug Targets. 2012;11(1):23–31. https://doi.org/10.2174/187153011794982086.

    Article  Google Scholar 

  15. Demirtas L, Guclu A, Erdur FM, Akbas EM, Ozcicek A, Onk D, Turkmen K. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus. Indian J Med Res. 2016;144(OCTOBER):515–24. https://doi.org/10.4103/0971-5916.200887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): An overview. J Interferon Cytokine Res. 2009;29(6):313–325). Mary Ann Liebert, Inc. 140 Huguenot Street, 3rd Floor New Rochelle. https://doi.org/10.1089/jir.2008.0027.

  17. Dey L, Attele AS, Yuan C-S. Type 2 diabetes alternative therapies for type 2 diabetes. Altern Med Rev. 2002;7.

  18. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat Rev Immunol. 2011;11(2):98–107. Nature Publishing Group. https://doi.org/10.1038/nri2925.

  19. Dong Y, Chen Y-T, Yang Y-X, Zhou X-J, Dai S-J, Tong J-F, Shou D, Li C. Metabolomics study of type 2 diabetes mellitus and the antidiabetic effect of berberine in zucker diabetic fatty rats using Uplc-ESI-Hdms. Phytother Res. 2016;30(5):823–8. https://doi.org/10.1002/ptr.5587.

    Article  CAS  PubMed  Google Scholar 

  20. Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, Azuma K, Hirose T, Tanaka K, Kominami E, Kawamori R, Fujitani Y, Watada H. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008;8(4):325–32. https://doi.org/10.1016/j.cmet.2008.08.009.

    Article  PubMed  Google Scholar 

  21. Eriksson JW. Metabolic stress in insulin’s target cells leads to ROS accumulation - A hypothetical common pathway causing insulin resistance. FEBS Lett. 2007;581(19):3734–3742. No longer published by Elsevier. https://doi.org/10.1016/j.febslet.2007.06.044.

  22. Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev. 2013;93(1):137–88. https://doi.org/10.1152/physrev.00045.2011.

    Article  CAS  PubMed  Google Scholar 

  23. Freeman JS. The increasing epidemiology of diabetes and review of current treatment algorithms. J Am Osteopath Assoc Health. 2010;110(7):2–6.

    Google Scholar 

  24. Fujitani Y, Kawamori R, Watada H. The role of autophagy in pancreatic β-cell and diabetes. Autophagy. 2009;5(2):280–2. https://doi.org/10.4161/auto.5.2.7656.

    Article  CAS  PubMed  Google Scholar 

  25. Goldfine AB, Fonseca V, Jablonski KA, Pyle L, Staten MA, Shoelson SE. The effects of salsalate on glycemic control in patients with type 2 diabetes: A randomized trial. Ann Intern Med. 2010;152(6):346–57. https://doi.org/10.7326/0003-4819-152-6-201003160-00004.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Gothai S, Ganesan P, Park SY, Fakurazi S, Choi DK, Arulselvan P. Natural phyto-bioactive compounds for the treatment of type 2 diabetes: Inflammation as a target. Nutrients MDPI AG. 2016;8(8):461. https://doi.org/10.3390/nu8080461.

    Article  CAS  Google Scholar 

  27. Granados S, Balcázar N, Guillén A, Echeverri F. Evaluation of the hypoglycemic effects of flavonoids and extracts from Jatropha gossypifolia L. Molecules. 2015;20(4):6181–93. https://doi.org/10.3390/molecules20046181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Halliwell B. The wanderings of a free radical. Free Radic Biol Med. 46(5):531–542. Pergamon. https://doi.org/10.1016/j.freeradbiomed.2008.11.008.

  29. Han J, Yi J, Liang F, Jiang B, Xiao Y, Gao S, Yang N, Hu H, Xie WF, Chen W. X-3, a mangiferin derivative, stimulates AMP-activated protein kinase and reduces hyperglycemia and obesity in db/db mice. Mol Cell Endocrinol. 2015;405:63–73. https://doi.org/10.1016/j.mce.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  30. Harbi J, Alsaadi H, Dawwas A, Al-Maliki M. Hypoglycemic Effect of 24-Methylencycloartan-3-one isolated from Prosopis juliflora pods in alloxan induced diabetic rabbits. 2015;3(1):6–13.

  31. Hojs R, Ekart R, Bevc S, Hojs N. Markers of inflammation and oxidative stress in the development and progression of renal disease in diabetic patients. Nephron. 2016;133(3);159–162. S. Karger AG. https://doi.org/10.1159/000447434.

  32. Hui H, Zhao X, Perfetti R. Structure and function studies of glucagon-like peptide-1 (GLP-1): The designing of a novel pharmacological agent for the treatment of diabetes. Diabetes Metab Res Rev. 2005;21(4):313–331. John Wiley & Sons, Ltd. https://doi.org/10.1002/dmrr.553.

  33. Hui Z, Zhou X, Li R, Wang Y, Ma J. Studies on the extraction process of tot | Biomedical Research. Biomed Res. 2015;26(1). https://www.biomedres.info/biomedical-research/studies-on-the-extraction-process-of-total-flavonoids-in-radix-puerariae-andtheir-hypoglycemic-effect-in-mice.html.

  34. Hur KY, Jung HS, Lee MS. Role of autophagy in β-cell function and mass. Diabetes Obes Metab. 2010;12(SUPPL. 2):20–26. https://doi.org/10.1111/j.1463-1326.2010.01278.x.

  35. IDF Diabetes Atlas. n.d. Retrieved March 26, 2021, from https://idf.org/e-library/epidemiology-research/diabetes-atlas/159-idf-diabetes-atlas-ninth-edition-2019.html.

  36. Isah MB, Masola B. Effect of oleanolic acid on small intestine morphology and enzymes of glutamine metabolism in diabetic rats. Int J Physiol Pathophysiol Pharmacol. 2017;9(5):128–36. https://www.ijppp.org.

  37. Jiang B, Ji M, Liu W, Chen L, Cai Z, Zhao Y, Bi X. Antidiabetic activities of a cucurbitane-type triterpenoid compound from Momordica charantia in alloxan-induced diabetic mice. Mol Med Rep. 2016;14(5):4865–72. https://doi.org/10.3892/mmr.2016.5800.

    Article  CAS  PubMed  Google Scholar 

  38. Jiang SJ, Dong H, Li J, Bin, Xu LJ, Zou X, Wang KF, Lu FE, Yi P. Berberine inhibits hepatic gluconeogenesis via the LKB1-AMPK-TORC2 signaling pathway in streptozotocin-induced diabetic rats. World J Gastroenterol. 2015;21(25):7777–85. https://doi.org/10.3748/wjg.v21.i25.7777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jung UJ, Choi MS. Obesity and its metabolic complications: The role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–6223. MDPI AG. https://doi.org/10.3390/ijms15046184.

  40. Karamifar H, Habibian N, Amirhakimi G, Karamizadeh Z, Alipour A. Adiponectin is a good marker for metabolic state among type 1 diabetes mellitus patients. Iranian J Pediatr. 2013;23(3):295–301.

    Google Scholar 

  41. Kawahito S, Kitahata H, Oshita S. Problems associated with glucose toxicity: Role of hyperglycemia-induced oxidative stress. World J Gastroenterol. 2009;15(33):4137–4142. Baishideng Publishing Group Inc. https://doi.org/10.3748/wjg.15.4137.

  42. Keshari AK, Kumar G, Kushwaha PS, Bhardwaj M, Kumar P, Rawat A, Kumar D, Prakash A, Ghosh B, Saha S. Isolated flavonoids from Ficus racemosa stem bark possess antidiabetic, hypolipidemic and protective effects in albino Wistar rats. J Ethnopharmacol. 2016;181:252–62. https://doi.org/10.1016/j.jep.2016.02.004.

    Article  CAS  PubMed  Google Scholar 

  43. Kim JJH, Cheon H, Jeong YT, Quan W, Kim KH, Cho JM, Lim YM, Oh SH, Jin SM, Kim JJH, Lee MKMS, Kim S, Komatsu M, Kang SW, Lee MKMS. Amyloidogenic peptide oligomer accumulation in autophagy-deficient β cells induces diabetes. J Clin Investig. 2014;124(8):3311–24. https://doi.org/10.1172/JCI69625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: An update. Ann Intern Med. 2002;137(1):25–33. American College of Physicians. https://doi.org/10.7326/0003-4819-137-1-200207020-00009.

  45. Kooti W, Moradi M, Ali-Akbari S, Sharafi-Ahvazi N, Asadi-Samani M, Ashtary-Larky D. Therapeutic and pharmacological potential of Foeniculum vulgare Mill: a review. J Herbmed Pharmacol. n.d.;4(1). Shahrekord University of Medical Sciences. Retrieved March 28, 2021, from http://www.herbmedpharmacol.com.

  46. Las G, Shirihai OS. The role of autophagy in β-cell lipotoxicity and type 2 diabetes. Diabetes Obes Metab. 2010;12(SUPPL. 2):15–19. https://doi.org/10.1111/j.1463-1326.2010.01268.x.

  47. Lee YJ, Suh KS, Choi MC, Chon S, Oh S, Woo JT, Kim SW, Kim JW, Kim YS. Kaempferol protects HIT-T15 pancreatic beta cells from 2-deoxy-D-ribose- induced oxidative damage. Phytother Res. 2010;24(3):419–23. https://doi.org/10.1002/ptr.2983.

    Article  CAS  PubMed  Google Scholar 

  48. Li D, Peng C, Xie X, Mao Y, Li M, Cao Z, Fan D. Antidiabetic effect of flavonoids from Malus toringoides (Rehd.) Hughes leaves in diabetic mice and rats. J Ethnopharmacol. 2014;153(3):561–7. https://doi.org/10.1016/j.jep.2014.02.026.

    Article  CAS  PubMed  Google Scholar 

  49. Li J-w, Yuan K, Shang Scun, Guo Y. A safer hypoglycemic agent for type 2 diabetes—Berberine organic acid salt. J Funct Foods. 2017;38:399–408. https://doi.org/10.1016/j.jff.2017.09.031.

    Article  CAS  Google Scholar 

  50. Lo MC, Chen MH, Lee W-S, Lu CI, Chang CR, Kao SH, Lee HM. Nε-(Carboxymethyl) lysine-induced mitochondrial fission and mitophagy cause decreased insulin secretion from β-cells. Am J Physiol Endocrinol Metab. 2015;309(10):829–39. https://doi.org/10.1152/ajpendo.00151.2015.

    Article  CAS  Google Scholar 

  51. Ma H, Hu Y, Zou Z, Feng M, Ye X, Li X. Antihyperglycemia and Antihyperlipidemia effect of protoberberine alkaloids from Rhizoma Coptidis in HepG2 cell and diabetic KK-Ay mice. Drug Dev Res. 2016;77(4):163–70. https://doi.org/10.1002/ddr.21302.

    Article  CAS  PubMed  Google Scholar 

  52. Marques AM, Pereira SL, Paiva RA, Cavalcante CV, Sudo SZ, Tinoco LW, Moreira DL, Guimaraes EF, Sudo RT, Kaplan MAC, Sudo GZ. Hypoglycemic effect of the methanol flower extract of piper Claussenianum and the major constituent 2’,6’-dihydroxy-4’-methoxychalcone in Streptozotocin diabetic rats. Indian J Pharm Sci. 2015;77(2):237–43. https://doi.org/10.4103/0250-474x.156624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Marrif HI, Al-Sunousi SI. Pancreatic β cell mass death. Front Pharmacol. 2016;7(APR):83. Frontiers Media S.A. https://doi.org/10.3389/fphar.2016.00083.

  54. Masini M, Lupi R, Bugliani M, Boggi U, Filipponi F, Masiello P, Marchetti P. A role for autophagy in β-cell life and death. Islets. 2009;1(2):157–159. PMID. https://doi.org/10.4161/isl.1.2.9372.

  55. McArdle MA, Finucane OM, Connaughton RM, McMorrow AM, Roche HM. Mechanisms of obesity-induced inflammation and insulin resistance: Insights into the emerging role of nutritional strategies. Front Endocrinol. 2013;4(MAY):52. Frontiers. https://doi.org/10.3389/fendo.2013.00052.

  56. Mukundwa A, Mukaratirwa S, Masola B. Effects of oleanolic acid on the insulin signaling pathway in skeletal muscle of streptozotocin-induced diabetic male Sprague-Dawley rats. J Diabetes. 2016;8(1):98–108. https://doi.org/10.1111/1753-0407.12260.

    Article  CAS  PubMed  Google Scholar 

  57. Navarro JF, Mora C. Role of inflammation in diabetic complications. Nephrol Dial Transplant. 2005;20(12):2601–2604. Nephrol Dial Transplant. https://doi.org/10.1093/ndt/gfi155.

  58. Oluwafemi Omoniyi Oguntibeju. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3): 45–63.

  59. Oguntibeju OO. Type 2 diabetes mellitus, oxidative stress and inflammation: examining the links. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):45–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Rehman K, Akash MSH. Mechanism of generation of oxidative stress and pathophysiology of type 2 diabetes mellitus: how are they interlinked? J Cell Biochem. 2017;118(11):3577–85. https://doi.org/10.1002/jcb.26097.

    Article  CAS  PubMed  Google Scholar 

  61. Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC. Autophagy defends pancreatic β cells from Human islet amyloid polypeptide-induced toxicity. J Clin Investig. 2014;124(8):3489–500. https://doi.org/10.1172/JCI71981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Saleh S, El-Maraghy N, Reda E, Barakat W. Modulation of diabetes and dyslipidemia in diabetic insulin-resistant rats by mangiferin: Role of adiponectin and TNF-α. An Acad Bras Cienc. 2014;86(4):1935–47. https://doi.org/10.1590/0001-3765201420140212.

    Article  CAS  PubMed  Google Scholar 

  63. Spranger J, Kroke A, Möhlig M, Hoffmann K, Bergmann MM, Ristow M, Boeing H, Pfeiffer AFH. Inflammatory cytokines and the risk to develop type 2 diabetes: Results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam study. Diabetes. 2003;52(3):812–7. https://doi.org/10.2337/diabetes.52.3.812.

    Article  CAS  PubMed  Google Scholar 

  64. Tanaka Y, Gleason CE, Tran POT, Harmon JS, Robertson RP. Prevention of glucose toxicity in HIT-T15 cells and Zucker diabetic fatty rats by antioxidants. Proc Natl Acad Sci USA. 1999;96(19):10857–62. https://doi.org/10.1073/pnas.96.19.10857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tang D, Chen Q-B, Xin XL, Aisa HA. Anti-diabetic effect of three new norditerpenoid alkaloids in vitro and potential mechanism via PI3K/Akt signaling pathway. Biomed Pharmacother. 2017;87:145–52. https://doi.org/10.1016/j.biopha.2016.12.058.

    Article  CAS  PubMed  Google Scholar 

  66. Tiong SH, Looi CY, Arya A, Wong WF, Hazni H, Mustafa MR, Awang K. Vindogentianine, a hypoglycemic alkaloid from Catharanthus roseus (L.) G. Don (Apocynaceae). Fitoterapia. 2015;102:182–8. https://doi.org/10.1016/j.fitote.2015.01.019.

    Article  CAS  PubMed  Google Scholar 

  67. Tiong S, Looi C, Hazni H, Arya A, Paydar M, Wong W, Cheah S-C, Mustafa M, Awang K. Antidiabetic and antioxidant properties of alkaloids from Catharanthus roseus (L.) G. Don. Molecules. 2013;18(8):9770–84. https://doi.org/10.3390/molecules18089770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. US9066960B2 - Use of the effective fraction of alkaloids from mulberry twig in preparing hypoglycemic agents - Google Patents. (n.d.). Retrieved March 28, 2021, from https://patents.google.com/patent/US9066960B2/en.

  69. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol. 2007;39(1):44–84. https://doi.org/10.1016/j.biocel.2006.07.001.

    Article  CAS  PubMed  Google Scholar 

  70. Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: Cause, effect, or both? Curr Diabetes Rep. 2014;14(1):1–10. https://doi.org/10.1007/s11892-013-0453-1.

    Article  CAS  Google Scholar 

  71. Wang HK. The therapeutic potential of flavonoids. Expert Opin Investig Drugs. 2000;9(9):2103–2119. Ashley Publications Ltd. https://doi.org/10.1517/13543784.9.9.2103.

  72. Wang Xia, Bao W, Liu J, Ouyang YY, Wang D, Rong S, Xiao X, Shan ZL, Zhang Y, Yao P, Liu LG. Inflammatory markers and risk of type 2 diabetes: A systematic review and meta-analysis. Diabetes Care. 2013;36(1):166–175. American Diabetes Association. https://doi.org/10.2337/dc12-0702.

  73. Wang Xin, Liu R, Zhang W, Zhang X, Liao N, Wang Z, Li W, Qin X, Hai C. Oleanolic acid improves hepatic insulin resistance via antioxidant, hypolipidemic and anti-inflammatory effects. Mol Cell Endocrinol. 2013;376(1–2):70–80. https://doi.org/10.1016/j.mce.2013.06.014.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Z, Wu J, Zhou Q, Wang Y, Chen T. Berberine nanosuspension enhances hypoglycemic efficacy on streptozotocin induced diabetic C57BL/6 mice. Evid Based Complementary Altern Med. 2015. https://doi.org/10.1155/2015/239749.

  75. Wu F, Jin Z, Jin J. Hypoglycemic effects of glabridin, a polyphenolic flavonoid from licorice, in an animal model of diabetes mellitus. Mol Med Rep. 2013;7(4):1278–82. https://doi.org/10.3892/mmr.2013.1330.

    Article  CAS  PubMed  Google Scholar 

  76. Yang L, Wang Z, Jiang L, Sun W, Fan Q, Liu T. Total flavonoids extracted from Oxytropis falcata Bunge improve insulin resistance through regulation on the IKK β /NF- B inflammatory pathway. Evid Based Complementary Altern Med. 2017. https://doi.org/10.1155/2017/2405124.

  77. Yue J, Xu J, Cao J, Zhang X, Zhao Y. Cucurbitane triterpenoids from Momordica charantia L. and their inhibitory activity against α-glucosidase, α-amylase and protein tyrosine phosphatase 1B (PTP1B). J Funct Foods. 2017;37:624–31. https://doi.org/10.1016/j.jff.2017.07.041.

    Article  CAS  Google Scholar 

  78. Yuldasheva NK, Égamova FR, Ismailova GI, Khushbaktova ZA, Yusupova SM, Syrov VN. Effect of total flavonoids from Vexibia alopecuroides on the course of experimental diabetes in rats. Pharm Chem J. 2016;49(12):834–7. https://doi.org/10.1007/s11094-016-1382-5.

    Article  CAS  Google Scholar 

  79. Zhang L, Wei G, Liu Y, Zu Y, Gai Q, Yang L. Antihyperglycemic and antioxidant activities of total alkaloids from Catharanthus roseus in streptozotocin-induced diabetic rats. J For Res. 2016;27(1):167–74. https://doi.org/10.1007/s11676-015-0112-2.

    Article  CAS  Google Scholar 

  80. Zhang X, Huang H, Zhao X, Lv Q, Sun C, Li X, Chen K. Effects of flavonoids-rich Chinese bayberry (Myrica rubra Sieb. et Zucc.) pulp extracts on glucose consumption in human HepG2 cells. J Funct Foods. 2015;14:144–53. https://doi.org/10.1016/j.jff.2015.01.030.

    Article  CAS  Google Scholar 

  81. Zhu X, Cheng Y-Q, Du L, Li Y, Zhang F, Guo H, Liu Y-W, Yin X-X. Mangiferin attenuates renal fibrosis through down-regulation of Osteopontin in diabetic rats. Phytother Res. 2015;29(2):295–302. https://doi.org/10.1002/ptr.5254.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the management of Maharishi Markandeswar (Deemed to be University) for their research support. Special thanks to Dr. Adesh K Saini (Professor, Department of Biotechnology, MMDU) and Dr. Divya Mittal (University Post-Doctoral Fellow, MMDU) for critically reviewing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhishek Bansal.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest. 

Ethical clearance

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Bansal, A., Singh, V. et al. Flavonoids, alkaloids and terpenoids: a new hope for the treatment of diabetes mellitus. J Diabetes Metab Disord 21, 941–950 (2022). https://doi.org/10.1007/s40200-021-00943-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00943-8

Keywords

Navigation