Skip to main content

Advertisement

Log in

Assessment of ideal cardiovascular health metrics in refugees, East of Iran

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

In 2013, there was an estimation of greater than 4.5 million Afghan refugees who had migrated to the least developed countries. Over one million are legally registered in Iran. We assessed the heart health status as described by the American Heart Association (AHA) in the Afghan refugee populace.

Methods

This cross-sectional survey was carried out on 1,634 Afghan refugees, including 746 males (45.7%) and 888 females (54.3%), selected through a convenience sampling method in 2016. The American Heart Association's seven cardiovascular health metrics were evaluated to specify the status of heart health in Afghan refugees. Differences with age and sex were analyzed using the χ2 test.

Results

Only one (0.1%) participant met the ideal for all seven cardiovascular health metrics. No significant differences were found between women and men in meeting the ideal criteria for more than five cardiovascular health metrics. As age increased, the proportion of refugees who met the ideal for more than five cardiovascular health metrics declined.

Conclusions

Refugees were not meeting the ideal cardiovascular health for some of the assessed metrics. Intervention to improve and monitor heart health in Afghan refugees is needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Divkolaye NSH, Burkle FM. The Enduring health challenges of afghan immigrants and refugees in Iran: A systematic review. PLoS Curr. 2017:9. https://doi.org/10.1371/currents.dis.449b4c549951e359363a90a7f4cf8fc4.

  2. McLennan AK, Jayaweera H. Non-communicable diseases and risk factors in migrants from South Asian countries. (Oxford, 2014).

  3. López-Acuña D. Overcoming migrants’ barriers to health. Bull World Health Organ. 2008;86:583–4. https://doi.org/10.2471/BLT.08.020808.

    Article  Google Scholar 

  4. World Health Organization. Health of migrants:the way forward: report on al global consultation. Madrid. 2010.

  5. Dassanayake J, Gurrin L, Payne WR, Sundararajan V, Dharmage SC. Cardiovascular disease risk in immigrants: what is the evidence and where are the gaps? Asia Pac J Public Health. 2011;23(6):882–95. https://doi.org/10.1177/1010539509360572.

    Article  PubMed  Google Scholar 

  6. García Ballesteros A, Jiménez Basco B, Redondo González Á. La immigración latinoamericana en España en el siglo XXI. Invest Geogr/Santiago. 2009;70:55–70.

    Google Scholar 

  7. Patel J, Vyas A, Cruickshank J, Prabhakaran D, Hughes E, Reddy K, et al. Impact of migration on coronary heart disease risk factors: comparison of Gujaratis in Britain and their contemporaries in villages of origin in India. Atherosclerosis. 2006;185(2):297–306. https://doi.org/10.1016/j.atherosclerosis.2005.06.005.

    Article  CAS  PubMed  Google Scholar 

  8. Neuhouser ML, Thompson B, Coronado GD, Solomon CC. Higher fat intake and lower fruit and vegetables intakes are associated with greater acculturation among Mexicans living in Washington State. J Am Diet Assoc. 2004;104(1):51–7. https://doi.org/10.1016/j.jada.2003.10.015.

    Article  PubMed  Google Scholar 

  9. Pyakurel P, Karki P, Lamsal M, Ghimire A, Pokharel PK. Cardiovascular risk factors among industrial workers: a cross–sectional study from eastern Nepal. J Occup Med Toxicol. 2016;11(1):25. https://doi.org/10.1186/s12995-016-0109-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ogunmoroti O, Younus A, Rouseff M, Spatz ES, Das S, Parris D, et al. Assessment of American Heart Association’s ideal cardiovascular health metrics among employees of a large healthcare organization: the Baptist Health South Florida Employee Study. Clin Cardiol. 2015;38(7):422–9. https://doi.org/10.1002/clc.22417.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Lloyd-Jones DM, Hong Y, Labarthe D, Mozaffarian D, Appel LJ, Van Horn L, et al. Defining and setting national goals for cardiovascular health promotion and disease reduction: the American Heart Association’s strategic Impact Goal through 2020 and beyond. Circulation. 2010;121(4):586–613. https://doi.org/10.1161/CIRCULATIONAHA.109.192703.

    Article  PubMed  Google Scholar 

  12. Ford ES, Greenlund KJ, Hong Y. Ideal Cardiovascular Health and Mortality From All Causes and Diseases of the Circulatory System Among Adults in the United StatesClinical Perspective. Circulation. 2012;125(8):987–95. https://doi.org/10.1161/CIRCULATIONAHA.111.049122.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Chou L-P, Tsai C-C, Li C-Y, Hu SC. Prevalence of cardiovascular health and its relationship with job strain: a cross-sectional study in Taiwanese medical employees. BMJ Open. 2016;6(4):e010467. https://doi.org/10.1136/bmjopen-2015-010467.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jayaweera H. Migration and non-communicable diseases. COMPAS blog. 2013;12.

  15. Begam NS, Mini G. Impact of Migration on Non-Communicable Disease Risk Factors: Comparison of Gulf Migrants and their Non-Migrant Contemporaries in the District of Origin in Kerala, India. Int Arch BioMed Clin Res. 2016;2(2):59–64.

    Article  Google Scholar 

  16. World Health Organization. International migration, health and human rights. 2003;1–40.

  17. Patterson F, Zhang G, Davey A, Tan Y, Ma X, G, . American heart association’s ideal cardiovascular health metrics in under-represented Asian Americans. J Commun Health. 2016;41(6):1282–9. https://doi.org/10.1007/s10900-016-0217-3.

    Article  Google Scholar 

  18. Booth M. Assessment of physical activity: an international perspective. Res Q Exerc Sport. 2000;71(Sup2):114–20. https://doi.org/10.1080/02701367.2000.11082794.

    Article  PubMed  Google Scholar 

  19. Folsom AR, Yatsuya H, Nettleton JA, Lutsey PL, Cushman M, Rosamond WD, et al. Community prevalence of ideal cardiovascular health, by the American Heart Association definition, and relationship with cardiovascular disease incidence. J Am Coll Cardiol. 2011;57(16):1690–6. https://doi.org/10.1016/j.jacc.2010.11.041.

    Article  PubMed  PubMed Central  Google Scholar 

  20. World Health Organization. Global status report on noncommunicable diseases. Geneva: World Health Organization; 2011.

    Google Scholar 

  21. Iqbal R, Anand S, Ounpuu S, Islam S, Zhang X, Rangarajan S, et al. Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the INTERHEART study. Circulation. 2008;118(19):1929–37. https://doi.org/10.1161/CIRCULATIONAHA.107.738716.

    Article  CAS  PubMed  Google Scholar 

  22. Abeywardena MY. Dietary fats, carbohydrates and vascular disease: Sri Lankan perspectives. Atherosclerosis. 2003;171(2):157–61. https://doi.org/10.1016/s0021-9150(03)00157-6.

    Article  CAS  PubMed  Google Scholar 

  23. Tennakoon T. Cardiovascular risk factors and predicted risk of cardiovascular disease among Sri Lankans living in Kandy, Sri Lanka and Oslo, Norway. M.D. Thesis. University of Oslo (2012).

  24. Tribble DL. Antioxidant consumption and risk of coronary heart disease: emphasis on vitamin C, vitamin E, and β-carotene: a statement for healthcare professionals from the American Heart Association. Circulation. 1999;99(4):591–5. https://doi.org/10.1161/01CIR.99.4.591.

    Article  CAS  PubMed  Google Scholar 

  25. Morrison HI, Schaubel D, Desmeules M, Wigle DT. Serum folate and risk of fatal coronary heart disease. 1996;275(24):1893-6. https://doi.org/10.1001/jama.1996.03530480035037.

  26. Khaw KT, Barrett-Connor E. Dietary potassium and stroke-associated mortality-A 12 year prospective population based study. N Engl J Med. 1987;316(5):235–40. https://doi.org/10.1056/NEJM198701293160502.

    Article  CAS  PubMed  Google Scholar 

  27. Méjean C, Deschamps V, Bellin-Lestienne C, Oleko A, Darmon N, Serge H, et al. Associations of socioeconomic factors with inadequate dietary intake in food aid users in France (The ABENA study 2004–2005). Eur J Clin Nutr. 2010;64(4):374. https://doi.org/10.1038/ejcn.

    Article  PubMed  Google Scholar 

  28. Ross WL, Gallego-Perez DF, Lartey A, Sandow A, Escamilla RP. Dietary patterns in Liberian refugees in Buduburam, Ghana. Matern Child Nutr. 2017;13:e12401. https://doi.org/10.1111/mcn.12401.

    Article  Google Scholar 

  29. Wickramasekara P, Sehgal J, Mehran F, Noroozi L, Eisazadeh S. Afghan households in Iran: Profile and impact. A study funded by the European Commission, International Migration Programme, Geneva: ILO-UNHCR Available from http://www.unhcrorg/455835d92html (2006).

  30. Darmon N, Drewnowski A. Does social class predict diet quality?–. Am J Clin Nutr. 2008;87(5):1107–17. https://doi.org/10.1093/ajcn/87.5.1107.

    Article  CAS  PubMed  Google Scholar 

  31. De Irala-Estevez J, Groth M, Johansson L, Oltersdorf U, Prättälä R, Martínez-González MA. A systematic review of socio-economic differences in food habits in Europe: consumption of fruit and vegetables. Eur J Clin Nutr. 2000;54(9):706. https://doi.org/10.1038/sj.ejcn.1601080.

    Article  CAS  PubMed  Google Scholar 

  32. Lallukka T, Laaksonen M, Rahkonen O, Roos E, Lahelma E. Multiple socio-economic circumstances and healthy food habits. Eur J Clin Nutr. 2007;61(6):701. https://doi.org/10.1038/sj.ejcn.1602583.

    Article  CAS  PubMed  Google Scholar 

  33. Malavige G, De Alwis N, Siribaddana S, Weerasooriya N, Fernando D. Increasing diabetes and vascular risk factors in a sub-urban Sri Lankan population. Diabetes Res Clin Pract. 2002;57(2):143–5. https://doi.org/10.1016/S0168-8227(02)00015-3.

    Article  CAS  PubMed  Google Scholar 

  34. Lovegrove JA. CVD risk in South Asians: the importance of defining adiposity and influence of dietary polyunsaturated fat. Proc Nutr Soc. 2007;66(2):286–98. https://doi.org/10.1017/S0029665107005514.

    Article  CAS  PubMed  Google Scholar 

  35. Kazemi T, Hajihosseini M, Mashreghimoghadam H, Azdaki N, Ziaee M. Prevalence and determinants of hypertension among Iranian adults, Birjand, Iran. Int J Prev Med. 2017;8:36. https://doi.org/10.4103/ijpvm.IJPVM_103_16.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tennakoon SU, Kumar BN, Nugegoda DB, Meyer HE. Comparison of cardiovascular risk factors between Sri Lankans living in Kandy and Oslo. BMC public health. 2010;10(1):654. http://www.biomedcentral.com/1471-2458/10/654.

  37. Munger RG, Marin OG, Prineas RJ, Sinaiko AR. Elevated blood pressure among Southeast Asian refugee children in Minnesota. Am J Epidemiol. 1999;133(12):1257–65.

    Article  Google Scholar 

  38. Chernet A, Probst-Hensch N, Sydow V, Paris DH, Neumayr A, Labhrdt ND. Cardiovascular diseases risk factors among recently arrived Eritrean refugees in Switzerland. BMC Res Notes. 2019;12:668. https://doi.org/10.1186/s13104-019-4715-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Moran A, Diez Roux AV, Jackson SA, Kramer H, Manolio TA, Shrager S, et al. Acculturation is associated with hypertension in a multiethnic sample. Am J Hypertens. 2007;20(4):354–63. https://doi.org/10.1016/j.amjhyper.2006.09.025.

    Article  PubMed  Google Scholar 

  40. Jonas BS, Lando JF. Negative effect as a prospective risk factor for hypertension. Psychosom Med. 2000;62(2):188–96. https://doi.org/10.1097/00006842-200003000-00006.

    Article  CAS  PubMed  Google Scholar 

  41. Malm A, Tinghog P, Narusyte J, Saboonchi F. The refugee post - migration stress scale (RPMS) development and validation among refugees from syria recently resettled in Swiden. Confl Health. 2020;14:2. https://doi.org/10.1186/s13031-019-0246-5.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Geleijnse JM, Kok FJ, Grobbee DE. Impact of dietary and lifestyle factors on the prevalence of hypertension in Western populations. Eur J Public Health. 2004;14(3):235–9. https://doi.org/10.1093/eurpub/14.3.235.

    Article  PubMed  Google Scholar 

  43. Poulter N, Khaw K, Hopwood B, Mugambi M, Peart W, Rose G, et al. The Kenyan Luo migration study: observations on the initiation of a rise in blood pressure. BMJ. 1990;300(6730):967–72. https://doi.org/10.1136/bmj.300.6730.967.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Booth FW, Lees SJ. Fundamental questions about genes, inactivity, and chronic diseases. Physiol Genom. 2007;28(2):146–57. https://doi.org/10.1152/physiolgenomics.00174.2006.

    Article  CAS  Google Scholar 

  45. Berkowitz SA, Fabreau GE, Raghavan S, Kentoffioet K, Chang Y, He W, et al. Risk of developing diabetes among refugees and immigrants: a longitudinal analysis. J Commun Health. 2016;41(6):1274–81. https://doi.org/10.1007/s10900-016-0216-4.

    Article  Google Scholar 

  46. Kinzie JD, Riley C, Mcfarland B, Hayes M, Boehnlein J, Leung P, et al. High prevalence rates of diabetes and hypertension among refugee psychiatrics patients. J Nerv Ment Dis. 2008;196(2):108–12. https://doi.org/10.1097/NMD.0b013e318162aa51.

    Article  PubMed  Google Scholar 

  47. Goosen S, Middelkoop B, Stronks K, Agyemang C, Kunst A. High diabetes risk among asylum seekers in The Netherlands. Diabet Med. 2014;31(12):1532–41. https://doi.org/10.1111/dme.12510.

    Article  CAS  PubMed  Google Scholar 

  48. Prinz N, Konrad K, Brack Ch, Hahn E, Herbst A, Icks A, et al. Diabetes care in pediatric refugees from Africa or Middle East: experiences from Germany and Austria based on real-world data from the DPV registry. Eur J Endocrinol. 2019;181:31–8. https://doi.org/10.1530/eje-18-0898.

    Article  CAS  PubMed  Google Scholar 

  49. Yusuf S, Hawken S, Ôunpuu S, Dans T, Avezum A, Lanas F, et al. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case-control study. The lancet. 2004;364(9438):937–52. https://doi.org/10.1016/S0140-6736(04)17018-9.

    Article  Google Scholar 

  50. Poirier P, Giles TD, Bray GA, Hong Y, Stern JS, Pi-Sunyer FX, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss: an update of the 1997 American Heart Association Scientific Statement on Obesity and Heart Disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113(6):898–918. https://doi.org/10.1161/CIRCULATIONAHA.106.171016.

    Article  PubMed  Google Scholar 

  51. Davis D, Phares CR, Salas J Scherrer J. Prevalence of overweight and obesity in US-Bound refugees:2009–2017. J Immigr Minor Health. (2020). https://doi.org/10.1007/s10903-020-00974-y.

  52. Minas H. Mental health and cardiovascular disease in refugees. (ed. Alvarenga M, Byrne D.). Handbook of Psychocardiology. 713–25 (Springer, 2015).

  53. Stamler J, Daviglus ML, Garside DB, Dyer AR, Greenland P, Neaton JD. Relationship of baseline serum cholesterol levels in 3 large cohorts of younger men to long-term coronary, cardiovascular, and all-cause mortality and to longevity. JAMA. 2000;284(3):311–8. https://doi.org/10.1001/jama.284.3.311.

    Article  CAS  PubMed  Google Scholar 

  54. Navas-Nacher EL, Colangelo L, Beam C, Greenland P. Risk factors for coronary heart disease in men 18 to 39 years of age. Ann Intern Med. 2001;134(6):433–9. https://doi.org/10.7326/0003-4819-134-6-200103200-00007.

    Article  CAS  PubMed  Google Scholar 

  55. Njølstad I, Arnesen E, Lund-Larsen PG. Smoking, serum lipids, blood pressure, and sex differences in myocardial infarction: a 12-year follow-up of the Finnmark Study. Circulation. 1996;93(3):450–6. https://doi.org/10.1161/01.cir.93.3.450.

    Article  PubMed  Google Scholar 

  56. Jawad M, Khader A, Millett C. Differences in tobacco smoking prevalence and frequency between adolescent Palestine refugee and non-refugee populations in Jordan, Lebanon, Syria, and the West Bank: cross-sectional analysis of the global youth tobacco survey. Confl health. 2016;10:20. https://doi.org/10.1186/s13031-016-0087-4.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Narain JP, Garg R, Fric A. Non-communicable diseases in the South-East Asia region: burden, strategies and opportunities. Natl Med J India. 2011;24:280–7.

    PubMed  Google Scholar 

  58. Martiniuk A, Lee C, Lam T, Huxley R, Suh I, Jamrozik K, et al. The fraction of ischaemic heart disease and stroke attributable to smoking in the WHO Western Pacific and South-East Asian regions. Tob Control. 2006;15(3):181–8. https://doi.org/10.1136/tc.2005.013284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Fleg JL, Strait J. Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev. 2012;17(4–5):545–54. https://doi.org/10.1007/s10741-011-9270-2.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dhingra R, Vasan RS. Age as a risk factor. Med Clin. 2012;96(1):87–91. https://doi.org/10.1016/J.mcna.2011.11.003.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Research Deputy of Birjand University of Medical Sciences, Clinical Research Center at Birjand University of Medical Sciences, and all participants, without whom this study would not have been possible.

Funding

This research was supported by Birjand University of Medical Sciences.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by [Vida Mohammadparast], [Zabihullah Mohageg] and [Saeede Khosravi Bizhaem]. The first draft of the manuscript was written by [Marjan Farzad] and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Toba Kazemi.

Ethics declarations

Ethics approval and consent to participate

The study was conducted with the approval of the Ethics Committee of Birjand University of Medical Sciences (Ref: IR.BUMS.1395.258), which was gained by disclosing the research method and objectives and after obtaining written informed consent from all eligible elderly participants.

Consent for publication

N/A

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farzad, M., Kazemi, T., Mohammadparast, V. et al. Assessment of ideal cardiovascular health metrics in refugees, East of Iran. J Diabetes Metab Disord 20, 1479–1488 (2021). https://doi.org/10.1007/s40200-021-00890-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00890-4

Keywords

Navigation