Skip to main content
Log in

Gene ontology enrichment analysis of PPAR-γ modulators from Cassia glauca in diabetes mellitus

  • Research article
  • Published:
Journal of Diabetes & Metabolic Disorders Aims and scope Submit manuscript

Abstract

Background

PPAR-γ has an integrative role in the management of insulin resistance; ligands of this receptor have emerged as potent insulin sensitizers and may modulate proteins involved in the pathogenesis of diabetes mellitus. Hence the present study is aimed to identify PPAR-γ modulators from the plant Cassia glauca and predict the ontology enrichment analysis utilizing various in-silico tools.

Methods

ChEBI database was used to mine the phytoconstituents present in the plant C. glauca, SwissTargetPrediction database was used to identify the targets, and scrutinizing of phytoconstituents modulating PPAR-γ was performed. Autodock4.0 was used to dock phytoconstituent ligands with the target PPAR-γ. Multiple open-source databases and in-silico tools were utilized to predict the drug-likeness characters and predict side effects of the phytoconstituents modulating PPAR-γ and STRING database was used to construct a network between the modulated genes.

Results

Twenty-four phytoconstituents were identified from the plant Cassia glauca from which four were found to modulate PPAR-γ, sennoside was predicted to have the greatest drug-likeness score and a significantly less side effect whereas diphenyl sulfone was predicted to show hepatotoxicity with the greatest pharmacological activity of 0.815. [epicatechin-(4beta- > 8)]5-epicatechin showed the lowest binding affinity with target PPAR-γ i.e. -8.6 kcal/mol and possessing a positive drug-likeness score with no side effect data.

Conclusion

Bioctives were found free from probable side effects leaving out diphenyl sulfone having a prediction of hepatotoxicity, the anti-diabetic property of the plant may be due to the presence of [epicatechin-(4beta- > 8)]5-epicatechin which needs further validation by in-vitro and in-vivo protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mellitus D. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2005;28(S37):S5–10.

  2. Forouhi NG, Wareham NJ. Epidemiology of diabetes. Medicine. 2010;38(11):602–6.

    Article  Google Scholar 

  3. Deshpande AD, Harris-Hayes M, Schootman M. Epidemiology of diabetes and diabetes-related complications. Phys Ther. 2008;88(11):1254–64.

    Article  Google Scholar 

  4. Wagenmakers AJ, Frayn KN, Arner P, Yki-Järvinen H. Fatty acid metabolism in adipose tissue, muscle and liver in health and disease. Essays Biochem. 2006;27(42):89–103.

    Article  Google Scholar 

  5. Kadhe G, Arasan RE. Advances in drug delivery of oral hypoglycemic agents. Curr Sci. 2002;83(12):1539–43.

  6. Hays NP, Galassetti PR, Coker RH. Prevention and treatment of type 2 diabetes: current role of lifestyle, natural product, and pharmacological interventions. Pharmacol Ther. 2008;118(2):181–91.

    Article  CAS  Google Scholar 

  7. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives. Nat Rev Endocrinol. 2012;8(4):228–36.

    Article  CAS  Google Scholar 

  8. Rangwala SM, Lazar MA. Peroxisome proliferator-activated receptor γ in diabetes and metabolism. Trends Pharmacol Sci. 2004;25(6):331–6.

    Article  CAS  Google Scholar 

  9. Cho N, Momose Y. Peroxisome proliferator-activated receptor γ agonists as insulin sensitizers: from the discovery to recent progress. Curr Top Med Chem. 2008;8(17):1483–507.

    Article  CAS  Google Scholar 

  10. Janani C, Kumari BR. PPAR gamma gene–a review. Diabetes Metab Syndr. 2015;9(1):46–50.

    Article  CAS  Google Scholar 

  11. Martens FM, Visseren FL, Lemay J, de Koning EJ, Rabelink TJ. Metabolic and additional vascular effects of thiazolidinediones. Drugs. 2002;62(10):1463–80.

    Article  CAS  Google Scholar 

  12. Chinetti G, Fruchart JC, Staels B. Peroxisome proliferator-activated receptors (PPARs): nuclear receptors at the crossroads between lipid metabolism and inflammation. J Inflamm Res. 2000;49(10):497–505.

    Article  CAS  Google Scholar 

  13. Bassaganya-Riera J, Misyak S, Guri AJ, Hontecillas R. PPAR γ is highly expressed in F4/80hi adipose tissue macrophages and dampens adipose-tissue inflammation. Cell Immunol. 2009;258(2):138–46.

    Article  CAS  Google Scholar 

  14. Cha BS, Ciaraldi TP, Carter L, Nikoulina SE, Mudaliar S, Mukherjee R, Paterniti JR Jr, Henry RR. Peroxisome proliferator-activated receptor (PPAR) γ and retinoid X receptor (RXR) agonists have complementary effects on glucose and lipid metabolism in human skeletal muscle. Diabetologia. 2001;44(4):444–52.

    Article  CAS  Google Scholar 

  15. Wanjari MM, Mishra S, Dey YN, Sharma D, Gaidhani SN, Jadhav AD. Antidiabetic activity of Chandraprabha vati - a classical Ayurvedic formulation. J Ayurveda Integr Med. 2016;7(3):144–50. https://doi.org/10.1016/j.jaim.2016.08.010.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Duyu T, Khanal P, Dey YN, Jha SK. Network pharmacology of Withania somnifera against stress associated neurodegenerative diseases. Adv Tradit Med (ADTM). 2021. https://doi.org/10.1007/s13596-020-00530-x.

  17. Ternikar SG, Patil MB, Pasha I, Khanal P. Gene set enrichment analysis of α-amylase and α-glucosidase inhibitors of Cassia glauca. J Diabetes Metab Disord. 2020;19(2):683–9.

    Article  CAS  Google Scholar 

  18. Khanal P, Patil BM. Consolidation of network and experimental pharmacology to divulge the antidiabetic action of Ficus benghalensis L. bark. 3 Biotech. 2021;11:238.

    Article  Google Scholar 

  19. Khanal P, Patil BM. Integration of in silico, in vitro and ex vivo pharmacology to decode the anti-diabetic action of Ficus benghalensis L. bark. J Diabetes Metab Disord. 2020;19(2):1325–37.

    Article  CAS  Google Scholar 

  20. Veerapur VP, Pratap V, Thippeswamy BS, Marietta P, Bansal P, Kulkarni PV, Kulkarni VH. Polyphenolic enriched extract of Cassia glauca Lamk, improves streptozotocin-induced type-1 diabetes linked with partial insulin resistance in rats. J Ethnopharmacol. 2017;198:489–98.

    Article  CAS  Google Scholar 

  21. Srinivas Y. Phytochemical and in vitro anticancer activity of Cassia glauca leaves extract. Int J Green Pharm. 2019;13(04):354–8.

    CAS  Google Scholar 

  22. Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang J. PubChem substance and compound databases. Nucleic Acids Res. 2016;44(D1):D1202–13.

    Article  CAS  Google Scholar 

  23. Biovia DS. Discovery studio visualizer. San Diego, CA, USA. 2017;936.

  24. Drug-Likeness and molecular property prediction. molsoft molecules in silico. Available at: https://molsoft.com/mprop/.

  25. Ivanov SM, Lagunin AA, Rudik AV, Filimonov DA, Poroikov VV. ADVERPred–Web service for prediction of adverse effects of drugs. J Chem Inf Model. 2018;58(1):8–11.

    Article  CAS  Google Scholar 

  26. Halgren TA. Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J Comput Chem. 1996;17(5–6):490–519.

    Article  CAS  Google Scholar 

  27. Khanal P, Dey YN, Patil R, Chikhale R, Wanjari MM, Gurav SS, Patil BM, Srivastava B, Gaidhani SN. Combination of system biology to probe the anti-viral activity of andrographolide and its derivative against COVID-19. RSC Advances. 2021;11(9):5065–79.

    Article  CAS  Google Scholar 

  28. Duyu T, Khanal P, Khatib NA, Patil BM. Mimosa pudica Modulates Neuroactive Ligand-Receptor Interaction in Parkinson’s Disease. Indian J Pharm Educ Res. 2020;54(3):732–9.

    Article  CAS  Google Scholar 

  29. Khanal P, Patil BM. In vitro and in silico anti-oxidant, cytotoxicity and biological activities of Ficus benghalensis and Duranta repens. Chin Herb Med. 2020;12(4):406–13.

    Article  Google Scholar 

  30. Duyu T, Khatib NA, Khanal P, Patil BM, Hullatti KK. Network pharmacology-based prediction and experimental validation of Mimosa pudica for Alzheimer’s disease. J Phytopharmacol. 2020;9(1):46–53.

    Article  CAS  Google Scholar 

  31. Khanal P, Patil BM. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L. J Integr Med. 2021;19(1):66–77.

    Article  Google Scholar 

  32. Zeven AC, De Wet JM. Dictionary of cultivated plants and their regions of diversity: excluding most ornamentals, forest trees and lower plants. Pudoc; 1982.

  33. Khan ZI, Nahar B, Jakaria A, Rahman S, Chowdhury MH, Rahmatullah M. An evaluation of antihyperglycemic and antinociceptive effects of methanol extract of Cassia fistula L. (Fabaceae) leaves in Swiss albino mice. Adv Nat Appl Sci. 2010;4(3):305–11.

    Google Scholar 

  34. Pletz J, Enoch SJ, Jais DM, Mellor CL, Pawar G, Firman JW, Madden JC, Webb SD, Tagliati CA, Cronin MT. A critical review of adverse effects to the kidney: mechanisms, data sources, and in silico tools to assist prediction. Expert Opin Drug Metab Toxicol. 2018;14(12):1225–53.

    Article  CAS  Google Scholar 

  35. Cordero-Herrera I, Chen X, Ramos S, Devaraj S. (−)-Epicatechin attenuates high-glucose-induced inflammation by epigenetic modulation in human monocytes. Eur J Nutr. 2017;56(3):1369–73.

    Article  CAS  Google Scholar 

  36. Ursu O, Rayan A, Goldblum A, Oprea TI. Understanding drug-likeness. Wiley Interdiscip Rev Comput Mol Sci. 2011;1(5):760–81.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ismail Pasha.

Ethics declarations

Ethical statement

This work did not include any human subjects and animals to retrieve the data.

Conflict of interest

None declared.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ternikar, S.G., Patil, M.B., Pasha, I. et al. Gene ontology enrichment analysis of PPAR-γ modulators from Cassia glauca in diabetes mellitus. J Diabetes Metab Disord 20, 1239–1246 (2021). https://doi.org/10.1007/s40200-021-00848-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40200-021-00848-6

Keywords

Navigation