Skip to main content
Log in

Consolidation of network and experimental pharmacology to divulge the antidiabetic action of Ficus benghalensis L. bark

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

A total of 21 different bioactives were identified from F. benghalensis in which 3 molecules, i.e., apigenin, 3′,4′,5,7-tetrahydroxy-3-methoxyflavone, and kaempferol were predicted to target the highest number of proteins involved in diabetic pathogenesis in which protein tyrosine phosphatase 1b was primarily targeted. Similarly, a docking study identified ursolic acid to have the highest binding affinity with protein tyrosine phosphatase 1b. The combined synergic network analysis identified PI3K/Akt signaling pathway to be primarily modulated followed by the calcium signaling pathway. Similarly, in oral glucose tolerance test, we observed the efficacy of hydroalcoholic extract of F. benghalensis to lower the total area under the curve of glucose and increase total area under curve of insulin for 2 hours. Likewise, hydroalcoholic extract reversed the altered homeostatic hepatic enzymes after 28 days of treatments. Similarly, the extract also enhanced the antioxidant enzymes level like catalase and superoxide dismutase in liver homogenate. In summary, hydroalcoholic extract of F. benghalensis bark may act as an antidiabetic agent by enhancing the glycolysis, decreasing gluconeogenesis, promoting glucose uptake, enhancing insulin secretion, and maintaining pancreatic β-cell mass via PI3K/Akt signaling pathway and downregulating the function of  protein tyrosine phosphatase 1b.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Additional information

This work shares the common data for three groups (normal, diabetic, and GLI50) with the previously published article; Khanal P, Patil BM. Integration of network and experimental pharmacology to decipher the antidiabetic action of Duranta repens L. J Integr Med. 2021;19(1):66–77. https://doi.org/10.1016/j.joim.2020.10.003.

References

  • Ali O (2013) Genetics of type 2 diabetes. World J Diabetes 4(4):114–123

    PubMed  PubMed Central  Google Scholar 

  • Bai F, Xu Y, Chen J, Liu Q, Gu J, Wang X, Ma J, Li H, Onuchic JN, Jiang H (2013) Free energy landscape for the binding process of Huperzine A to acetylcholinesterase. Proc Natl Acad Sci 110(11):4273–4278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barros RPA, Machado UF, Gustafsson JÅ (2016) Estrogen receptors: new players in diabetes mellitus. Trends Mol Med 12(9):425–431

    Google Scholar 

  • Brandstrup N, Kirk JE, Bruni C (1957) The hexokinase and phosphoglucoisomerase activities of aortic and pulmonary artery tissue in individuals of various ages. J Gerontol 12(2):166–171

    CAS  PubMed  Google Scholar 

  • Calkin AC, Jandeleit-Dahm KA, Sebekova E, Allen TJ, Mizrahi J, Cooper ME, Tikellis C (2007) PPARs and diabetes-associated atherosclerosis. Curr Pharm Des 13(26):2736–2741

    CAS  PubMed  Google Scholar 

  • Chaudhury A, Duvoor C, Dendi VSR, Kraleti S, Chada A, Ravilla R, Marco A, Shekhawat NS, Montales MT, Kuriakose K, Sasapu A, Beebe A, Patil N, Musham CK, Lohani GP, Mirza W (2017) Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front Endocrinol (Lausanne) 2017(8):6

    Google Scholar 

  • Claiborne A (1985) Catalase activity. In: Greenwald RA (ed) CRC Hand Book of Methods for Oxygen Radical Research. CRC Press, Boca Raton, Florida, USA, pp 283–284

    Google Scholar 

  • Cohen JA, Kaplan MM (1979) The SGOT/SGPT ratio–an indicator of alcoholic liver disease. Dig Dis Sci 24(11):835–838

    CAS  PubMed  Google Scholar 

  • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, Chu CS, Schuldiner M, Gebbia M, Recht J, Shales M, Ding H, Xu H, Han J, Ingvarsdottir K, Cheng B, Andrews B, Boone C, Berger SL, Hieter P, Zhang Z, Brown GW, Ingles CJ, Emili A, Allis CD, Toczyski DP, Weissman JS, Greenblatt JF, Krogan NJ (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446(7137):806–810

    CAS  PubMed  Google Scholar 

  • Espinoza-Fonseca LM (2006) The benefits of the multi-target approach in drug design and discovery. Bioorganic Med Chem 14(4):896–897

    CAS  Google Scholar 

  • Fernandez-Ruiz R, Vieira E, Garcia-Roves PM, Gomis R (2014) Protein tyrosine phosphatase-1B modulates pancreatic β-cell mass. PLoS ONE 9(2):e90344

    PubMed  PubMed Central  Google Scholar 

  • Gayathri M, Kannabiran K (2008) Antidiabetic and ameliorative potential of Ficus bengalensis bark extract in streptozotocin induced diabetic rats. Indian J Clin Biochem 23(4):394–400

    PubMed  PubMed Central  Google Scholar 

  • Government of India, Ministry of Health and Family Welfare, Department of AYUSH. The Ayurvedic Pharmacopoeia of India. Part- 1, Volume – 1, Page No. 119

  • Gupta RC, Chang D, Nammi S, Bensoussan A, Bilinski K, Roufogalis BD (2017) Interactions between antidiabetic drugs and herbs: an overview of mechanisms of action and clinical implications. Diabetol Metab Syndr 9(1):1–12

    Google Scholar 

  • He Y, Gong L, Fang Y, Zhan Q, Liu HX, Lu Y, Guo GL, Lehman-McKeeman L, Fang J, Wan YJY (2013) The role of retinoic acid in hepatic lipid homeostasis defined by genomic binding and transcriptome profiling. BMC Genomics 14(1):575

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herman WH, Zimmet P (2012) Type 2 diabetes: an epidemic requiring global attention and urgent action. Diabetes Care 35(5):943–944

    PubMed  PubMed Central  Google Scholar 

  • Hiroshi O, Nobuko O, Kunio Y (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochm 95:351–358

    Google Scholar 

  • Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4(11):682–690

    CAS  PubMed  Google Scholar 

  • Huang X, Liu G, Guo J, Su ZQ (2018) The PI3K/AKT pathway in obesity and type 2 diabetes. Int J Biol Sci 14(11):1483–1496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang WJ, Peng YC, Yang KM (2018) Cellular signaling pathways regulating β-cell proliferation as a promising therapeutic target in the treatment of diabetes. Exp Ther Med 16(4):3275–3285

    PubMed  PubMed Central  Google Scholar 

  • Kakar S, Kamath PS, Burgart LJ (2004) Sinusoidal dilatation and congestion in liver biopsy: is it always due to venous outflow impairment? Arch Pathol Lab Med 128(8):901–904

    PubMed  Google Scholar 

  • Karter AJ, Schillinger D, Adams AS, Moffet HH, Liu J, Adler NE, Kanaya AM (2013) Elevated rates of diabetes in pacific islanders and Asian subgroups. Diabetes Care 36(3):574–579

    PubMed  PubMed Central  Google Scholar 

  • Kennedy BP (1999) Role of protein tyrosine phosphatase-1B in diabetes and obesity. Biomed & Pharmacother 53:466–470

    CAS  Google Scholar 

  • Kerru N, Singh-Pillay A, Awolade P, Singh P (2018) Current anti-diabetic agents and their molecular targets: a review. Eur J Med Chem 152:436–488

    CAS  PubMed  Google Scholar 

  • Khaliq HA (2017) A review of pharmacognostic, physicochemical, phytochemical and pharmacological studies on Ficus bengalensis L. J Sci Innovative Res 6(4):151–163

    Google Scholar 

  • Khan SN, Khan AU (2016) Breaking the spell: combating multidrug resistant “superbugs.” Front Microbiol. 7:1–11

    Google Scholar 

  • Khanal P, Patil BM (2019) Gene set enrichment analysis of alpha-glucosidase inhibitors from Ficus benghalensis. Asian Pac J Trop Biomed 9(6):263–270

    CAS  Google Scholar 

  • King J (1959) A routine method for the estimation of lactic dehydrogenase activity. J Med Lab Technol 16:265–272

    CAS  PubMed  Google Scholar 

  • Konstandi M, Shah YM, Matsubara T, Gonzalez FJ (2013) Role of PPARα and HNF4α in stress-mediated alterations in lipid homeostasis. PLoS ONE 8(8):e70675

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar R, Patel DK, Prasad SK, Sairam K, Hemalatha S (2012) Antidiabetic activity of alcoholic root extract of Caesalpinia digyna in streptozotocin-nicotinamide induced diabetic rats. Asian Pac J Trop Biomed 2(2):S934–S940

    Google Scholar 

  • Lipinski CA (2004) Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov Today Technol 1(4):337–341

    CAS  PubMed  Google Scholar 

  • Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res 35(SUPPL. 1):198–201

    Google Scholar 

  • Maruthur NM (2013) The growing prevalence of type 2 diabetes: increased incidence or improved survival? Curr Diab Rep 13(6):786–794

    CAS  PubMed  Google Scholar 

  • Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock 4 and AutoDockTools 4: automated docking with selective receptor flexibility. J Comput Chem 30(16):2785–2791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrow JK, Tian L, Zhang S (2010) Molecular networks in drug discovery. Crit Rev Biomed Eng 38(2):143–156

    PubMed  PubMed Central  Google Scholar 

  • Nair J, Velpandian T, Das US, Sharma P, Nag T, Mathur SR, Mathur R (2018) Molecular and metabolic markers of fructose induced hepatic insulin resistance in developing and adult rats are distinct and Aegle marmelos is an effective modulator. Sci Rep 8(1):15950

    PubMed  PubMed Central  Google Scholar 

  • Nandi A, Chatterjee IB (1987) Scavenging of superoxide radical by ascorbic acid. J Biosci 11(1–4):435–441

    CAS  Google Scholar 

  • Oh CM, Park S, Kim H (2016) Serotonin as a new therapeutic target for diabetes mellitus and obesity. Diabetes Metab J 40(2):89–98

    PubMed  PubMed Central  Google Scholar 

  • Ohlson S (2008) Designing transient binding drugs: a new concept for drug discovery. Drug Discov Today 13(9–10):433–439

    CAS  PubMed  Google Scholar 

  • Pari L, Srinivasan S (2010) Antihyperglycemic effect of diosmin on hepatic key enzymes of carbohydrate metabolism in streptozotocin–nicotinamide-induced diabetic rats. Biomed Pharmacother 64(7):477–481

    CAS  PubMed  Google Scholar 

  • Prashanth BK (2017). Banyan tree: Ficus benghalensis: uses, research, renedies, side effects. easyayurveda. https://easyayurveda.com/2017/05/22/banyan-tree-ficus-benghalensis/

  • Pujol A, Mosca R, Farrés J, Aloy P (2010) Unveiling the role of network and systems biology in drug discovery. Trends Pharmacol Sci 31(3):115–123

    CAS  PubMed  Google Scholar 

  • Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81(12–13):975–994

    PubMed  Google Scholar 

  • Schmid JA, Birbach A (2008) IkappaB kinase beta (IKKbeta/IKK2/IKBKB)–a key molecule in signaling to the transcription factor NF-kappaB. Cytokine Growth Factor Rev 19(2):157–165. https://doi.org/10.1016/j.cytogfr.2008.01.006

    Article  CAS  PubMed  Google Scholar 

  • Sedlak J, Lindsay RH (1968) Estimation of total, protein-bound, and non-protein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem 25:192–205

    CAS  PubMed  Google Scholar 

  • Seifter S, Dayton S (1950) The estimation of glycogen with the anthrone reagent”. Arch Biochem 25(1):191–200

    CAS  PubMed  Google Scholar 

  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Morris JH, Cook H, Kuhn M, Wyder S, Simonovic M, Santos A, Doncheva NT, Roth A, Bork P, Jensen LJ, von Mering C (2017) The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res 45(D1):D362–D368

    CAS  PubMed  Google Scholar 

  • Wang X, Yang B, Zhang A, Sun H, Yan G (2012) Potential drug targets on insomnia and intervention effects of Jujuboside A through metabolic pathway analysis as revealed by UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition approach. J Proteomics 75(4):1411–1427

    CAS  PubMed  Google Scholar 

  • Wang Z, Wang J, Chan P (2013) Treating type 2 diabetic mellitus with traditional—Google Scholar. Evid Based Comp 2013:343594

    Google Scholar 

  • WHO (1965) Diabetes mellitus. report of a WHO expert committee. World Health Organ Tech Rep Ser 310:1–44

    Google Scholar 

  • Wu Y, Ding Y, Tanaka Y, Zhang W (2014) Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 11(11):1185–1200

    PubMed  PubMed Central  Google Scholar 

  • Yu XH, Zheng XL, Tang CK (2015) Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis. Adv Clin Chem 70:1–30

    CAS  PubMed  Google Scholar 

  • Zhang W, Hong D, Zhou Y, Zhang Y, Shen Q, Li JY, Hu LH, Li J (2006) Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochim Biophys Acta Gen Subj 1760(10):1505–1512

    CAS  Google Scholar 

Download references

Acknowledgements

Pukar Khanal is thankful to Dr. Yadu Nandan Dey for his suggestions during the preparation of the manuscript. The authors are also thankful to Principal KLE College of Pharmacy, Belagavi, and Head of Department, Department of Pharmacology for their support and providing necessary facilities.

Funding

This work has not received any funding from any government and private agencies.

Author information

Authors and Affiliations

Authors

Contributions

PK performed the review of literature, performed the work, and drafted the manuscript. BMP designed the work, supervised, and reviewed the final manuscript.

Corresponding author

Correspondence to Pukar Khanal.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (PDF 128 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khanal, P., Patil, B.M. Consolidation of network and experimental pharmacology to divulge the antidiabetic action of Ficus benghalensis L. bark. 3 Biotech 11, 238 (2021). https://doi.org/10.1007/s13205-021-02788-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-021-02788-7

Keywords

Navigation