Skip to main content
Log in

Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Mg alloy seamless tubes (MASTs) were prepared through three-high rotary piercing process, effect of billet temperature, feed angle and plug advance on microstructure, texture and mechanical properties of tubes were investigated. The effect on the deformation mechanism and improving mechanical properties mechanism of this process for MASTs were studied. The results show that the grain size could be refined to 11.3–31.1% of the initial grain size and the microstructure was more uniform due to the accumulation of strain. The formation of high strain gradient at the grain boundary activated the non-basal slip. This piercing process could change the grain orientation of as-extruded billet and eliminate the initial basal texture to produce new favorable texture. And the process could accelerate the continuous dynamic recrystallization process. After piercing, yield strength of pierced tubes decreased by 6.7%, ultimate tensile strength (UTS) and elongation increased by 32.4 and 45%, respectively, at optimal parameters. The plate-shaped β1-Mg17Al12 orientation transformed from basal plates to prismatic plates, facilitating the increase in UTS and ductility. The decrease size of nanoscale precipitates could reduce the cracking possibility. The critical resolved shear stress ratios of pyramidal (10−11) slip and (11−22) slip to basal slip for the sample including prismatic plates both decreased compared to that including basal plates. This could enhance the ductility of tube sample. Moreover, grain boundary sliding could contribute to a better ductility via coordinating deformation and reducing stress concentration during piercing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.F. Song, J. She, D.L. Chen, F.S. Pan, J. Magnes. Alloys 8, 1 (2020)

    Article  CAS  Google Scholar 

  2. B. Che, L.W. Lu, J. Zhang, J.H. Zhang, M. Ma, L.F. Wang, F. Qi, Mater. Sci. Eng. A 832, 142475 (2022)

    Article  CAS  Google Scholar 

  3. S.H. You, Y.D. Huang, K.U. Kainer, N. Hort, J. Magnes. Alloys 5, 239 (2017)

    Article  CAS  Google Scholar 

  4. K. Luo, L. Zhang, G.H. Wu, W.C. Liu, W.J. Ding, J. Magnes. Alloys 7, 345 (2019)

    Article  CAS  Google Scholar 

  5. M. Eftekhari, A. Fata, G. Faraji, M.M. Mashhadi, J. Alloys Compd. 742, 442 (2018)

    Article  CAS  Google Scholar 

  6. Z. Cao, F.H. Wang, W. Qu, Z.Y. Zhang, J. Li, J. Dong, Mater. Des. 67, 64 (2015)

    Article  CAS  Google Scholar 

  7. Y.M. Hwang, C.N. Chang, Proc. Eng. 81, 2249 (2014)

    Article  CAS  Google Scholar 

  8. W.L. Lu, R. Yue, H.W. Miao, P. Jia, H. Huang, G.Y. Yuan, Mater. Lett. 245, 155 (2019)

    Article  CAS  Google Scholar 

  9. K.K. Guo, M.Y. Liu, J.F. Wang, Y.F. Sun, W.Q. Li, S.J. Zhu, L.J. Wang, S.K. Guan, J. Magnes. Alloys 8, 873 (2020)

    Article  CAS  Google Scholar 

  10. Q. Wu, S.J. Zhu, L.J. Wang, Q. Liu, G.C. Yue, J. Wang, S.K. Guan, J. Mech. Behav. Biomed. Mater. 8, 1 (2012)

    Article  CAS  PubMed  Google Scholar 

  11. V.P. Basavaraj, U. Chakkingal, T.S.P. Kumar, J. Mater. Process. Technol. 209, 89 (2009)

    Article  Google Scholar 

  12. G.S. Zhang, Z.M. Zhang, X.B. Li, Z.M. Yan, X. Che, J.M. Yu, Y.Z. Meng, J. Alloys Compd. 790, 48 (2019)

    Article  CAS  Google Scholar 

  13. Q. Yang, S.H. Lv, Z.X. Yan, X.R. Hua, X. Qiu, J. Meng, Mater. Des. 201, 109482 (2021)

    Article  CAS  Google Scholar 

  14. G. Faraji, P. Yavari, S. Aghdamifar, M.M. Mashhadi, J. Mater. Sci. Technol. 30, 134 (2014)

    Article  CAS  Google Scholar 

  15. H.J. Hu, X. Qin, D.F. Zhang, X. Ma, J. Adv. Manuf. Technol. 98, 897 (2018)

    Article  Google Scholar 

  16. B.B. Dong, X. Che, Q. Wang, M. Meng, Z. Gao, J. Ma, F.L. Yang, Z.M. Zhang, J. Alloys Compd. 836, 155442 (2020)

    Article  CAS  Google Scholar 

  17. A. Srivastava, M.W. Vaughan, B. Mansoor, W. Nasim, R.E. Barber, I. Karaman, K.T. Hartwig, Mater. Sci. Eng. 814, 141236 (2021)

    Article  CAS  Google Scholar 

  18. X.F. Ding, Y.H. Shuang, Q.Z. Liu, C.J. Zhao, J. Mater. Sci. Technol. 34, 408 (2018)

    Article  CAS  Google Scholar 

  19. Z. Zhang, D. Liu, R.Q. Zhang, Y.H. Yang, Y.H. Pang, J.G. Wang, H. Wang, J. Mater. Process. Technol. 279, 116557 (2020)

    Article  CAS  Google Scholar 

  20. J.A. Francis, Mater. Sci. Technol. 33, 2157 (2017)

    Article  CAS  Google Scholar 

  21. X.F. Ding, F.Q. Zhao, Y.H. Shuang, L.F. Ma, Z.B. Chu, C.J. Zhao, J. Mater. Process. Technol. 276, 116325 (2020)

    Article  CAS  Google Scholar 

  22. F.Q. Zhao, X.F. Ding, R.J. Cui, X.Y. Fan, Y.G. Li, Y.H. Shuang, J. Mater. Res. 34, 2114 (2019)

    Article  CAS  Google Scholar 

  23. J.J. Bhattacharrya, S.R. Agnew, G. Muralidharan, Acta Mater. 86, 80 (2015)

    Article  Google Scholar 

  24. K. Li, Z.Y. Chen, T. Chen, J.B. Shao, R.K. Wang, C.M. Liu, J. Alloys Compd. 792, 894 (2019)

    Article  CAS  Google Scholar 

  25. M.N. Zhang, J.H. Wang, Y.P. Zhu, L. Zhang, P.P. Jin, Mater. Sci. Eng. A 775, 138978 (2022)

    Article  Google Scholar 

  26. Y. Lin, Z.M. Zhang, Y. Xue, J. Xu, B.B. Dong, X.B. Li, J. Alloys Compd. 906, 164406 (2022)

    Article  Google Scholar 

  27. J. Liao, L.X. Zhang, H. Xiang, J. Alloys Compd. 1, 895 (2022)

    Google Scholar 

  28. M.Y. Zhan, C.M. Li, W.W. Zhang, Acta Metall. Sin. (Engl. Lett). 48, 616 (2012)

    Google Scholar 

  29. Z.J. Zhang, L. Yuan, M.Y. Zheng, Q.H. Wei, D.B. Shan, B. Guo, J. Mater. Process. Technol. 311, 117828 (2023)

    Article  CAS  Google Scholar 

  30. S. Celotto, Acta Mater. 48, 1775 (2000)

    Article  CAS  Google Scholar 

  31. Y.J. Wan, P. Zeng, Y.C. Dou, D. Hu, X.Y. Qian, Q. Zeng, G.X. Sun, G.F. Quan, J. Magnes. Alloys 10, 1256 (2022)

    Article  CAS  Google Scholar 

  32. J. Koike, T. Kobayashi, T. Mukai, H. Watanabe, M. Suzuki, K. Maruyama, K. Higashi, Acta Mater. 51, 2055 (2003)

    Article  CAS  Google Scholar 

  33. F.L. Wang, J.J. Bhattacharyya, S.R. Agnew, Mater. Sci. Eng. A 666, 114 (2016)

    Article  CAS  Google Scholar 

  34. J.F. Nie, Scr. Mater. 48, 1009 (2003)

    Article  CAS  Google Scholar 

  35. P.H. Manrique, J.D. Robson, M.T. Perez-Prado, Acta Mater. 124, 456 (2017)

    Article  Google Scholar 

  36. A. Maldar, L.Y. Wang, G.M. Zhu, X.Q. Zeng, J. Magnes. Alloys 8, 210 (2020)

    Article  CAS  Google Scholar 

  37. A. Tehranchi, B.L. Yin, W.A. Curtin, Acta Mater. 151, 56 (2018)

    Article  CAS  Google Scholar 

  38. Y. Zeng, O.L. Shi, B. Jiang, G.F. Quan, F.S. Pan, J. Alloys Compd. 764, 555 (2018)

    Article  CAS  Google Scholar 

  39. L.X. Yang, Y.D. Huang, Z.Q. Hou, L. Xiao, Y.L. Xu, X.W. Dong, F. Li, G. Kurz, B.D. Sun, Z.Q. Li, N. Hort, J. Magnes. Alloys 11, 2763 (2023)

    Article  CAS  Google Scholar 

  40. N.S. Prasad, N.N. Kumar, R. Narasimhan, S. Suwas, Acta Mater. 94, 281 (2015)

    Article  CAS  Google Scholar 

  41. Z.K. Ji, X.G. Qiao, W.T. Sun, L. Yuan, F.G. Cong, G.J. Wang, M.Y. Zheng, Mater. Sci. Eng. A 885, 145587 (2023)

    Article  CAS  Google Scholar 

  42. W.W. Lei, H. Zhang, Mater. Lett. 271, 127781 (2020)

    Article  CAS  Google Scholar 

  43. Z.R. Zeng, J.F. Nie, S.W. Xu, C.H.J. Davies, N. Birbilis, Nat. Commun. 8, 972 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the PhD Scientific Research Startup Foundation of Shanxi Province (No. 20202002), the Fundamental Research Program of Shanxi Province (No. 202103021223287), the Shanxi Province Key Technology Project (No. 20191102009) and the Shanxi Province Key Project of Research and Development Plan (No. 201903D121049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofeng Ding.

Ethics declarations

Conflict of interest

The authors state that there are no conflict of interests to disclose.

Additional information

Available online at https://link.springer.com/journal/40195.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 205 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, X., Wu, Z., Li, T. et al. Effect of Three-High Rotary Piercing Process on Microstructure, Texture and Mechanical Properties of Magnesium Alloy Seamless Tube. Acta Metall. Sin. (Engl. Lett.) (2024). https://doi.org/10.1007/s40195-024-01690-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40195-024-01690-4

Keywords

Navigation