Skip to main content

Advertisement

Log in

Evolution of micro-pores in a single crystal nickel-based superalloy during 980 °C creep

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The evolution of micro-pores in a single crystal nickel-based superalloy during creep at 980 °C/220 MPa was investigated by X-ray computed tomography. Time-dependent ex-situ 3D information including the number, volume fraction, distribution and morphology of micro-pores was analyzed. The results reveal that the significant formation and growth of micro-pores occur at the end of secondary/beginning of tertiary creep stage. The irregular large pores as well as high density pores located at strain concentration region are the major detrimental factors facilitating the creep damage. Creep failure is resulted from the connection of surface cracks induced by oxidation, and the internal cracks generated from growth and merging of micro-pores.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability Statement

All the data discussed are directly presented in the paper and therefore they are automatically accessible

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications (Cambridge University Press, Cambridge, 2006)

    Book  Google Scholar 

  2. T.M. Pollock, S. Tin, J. Propuls, Power 22, 361 (2006)

    CAS  Google Scholar 

  3. J.W. Aveson, P.A. Tennant, B.J. Foss, B.A. Shollock, H.J. Stone, N. D’Souza, Acta Mater. 61, 5162 (2013)

    Article  CAS  Google Scholar 

  4. P. Auburtin, T. Wang, S.L. Cockcroft, A. Mitchell, Metall. Mater. Trans. B 31, 801 (2000)

    Article  Google Scholar 

  5. A. Pyzalla, B. Camin, T. Buslaps, M. Di Michiel, H. Kaminski, A. Kottar, A. Pernack, W. Reimers, Science 308, 92 (2005)

    Article  CAS  Google Scholar 

  6. C. Panwisawas, H. Mathur, J.C. Gebelin, D. Putman, C.M.F. Rae, R.C. Reed, Acta Mater. 61, 51 (2013)

    Article  CAS  Google Scholar 

  7. T.M. Pollock, W.H. Murphy, E.H. Goldman, D.L. Uram, J.S. Tu, in Superalloys. ed. by S.D. Antolovich, R.W. Stusrud, R.A. MacKay, D.L. Anton, T. Khan, R.D. Kissinger, D.L. Klarstrom (TMS, Warrendale, 1992), p. 125

    Google Scholar 

  8. T. Link, S. Zabler, A. Epishin, A. Haibel, M. Bansal, X. Thibault, Mater. Sci. Eng. A 425, 47 (2006)

    Article  Google Scholar 

  9. B. Ruttert, C. Meid, L. Mujica Roncery, I. Lopez-Galilea, M. Bartsch, W. Theisen, Scr. Mater. 155, 139 (2018)

    Article  CAS  Google Scholar 

  10. D.L. Anton, A.F. Giamei, Mater. Sci. Eng. 76, 173 (1985)

    Article  CAS  Google Scholar 

  11. J. Komenda, P.J. Henderson, Scr. Mater. 37, 1821 (1997)

    Article  CAS  Google Scholar 

  12. S. Roskosz, J. Adamiec, Mater. Charact. 60, 1120 (2009)

    Article  CAS  Google Scholar 

  13. J. Jaroszewicz, H. Matysiak, J. Michalski, K. Matuszewski, K. Kubiak, K.J. Kurzydlowski, Adv. Mater. Res. 278, 66 (2011)

    Article  CAS  Google Scholar 

  14. E. Plancher, P. Gravier, E. Chauvet, J.J. Blandin, E. Boller, G. Martin, L. Salvo, P. Lhuissier, Acta Mater. 181, 1 (2019)

    Article  CAS  Google Scholar 

  15. Z. Xu, B. Britton, Y. Guo, Mater. Sci. Eng. A 806, 140800 (2021)

    Article  CAS  Google Scholar 

  16. J. Lecomte-Beckers, Metall. Trans. A 19, 2341 (1988)

    Article  Google Scholar 

  17. X. Li, L. Wang, J. Dong, L. Lou, J. Zhang, Metall. Mater. Trans. A 48, 2682 (2017)

    Article  CAS  Google Scholar 

  18. A. Epishin, T. Link, I.L. Svetlov, G. Nolze, R.S. Neumann, H. Lucas, Int. J. Mater. Res. 104, 776 (2013)

    Article  CAS  Google Scholar 

  19. B.S. Bokstein, A.I. Epishin, T. Link, V.A. Esin, A.O. Rodin, I.L. Svetlov, Scr. Mater. 57, 801 (2007)

    Article  CAS  Google Scholar 

  20. H. Buck, P. Wollgramm, A.B. Parsa, G. Eggeler, Materialwiss. Werkstofftech. 46, 577 (2015)

    Article  Google Scholar 

  21. S. Utada, J. Rame, S. Hamadi, J. Delautre, P. Villechaise, J. Cormier, Mater. Sci. Eng. A 789, 139571 (2020)

    Article  CAS  Google Scholar 

  22. A. Isaac, F. Sket, W. Reimers, B. Camin, G. Sauthoff, A.R. Pyzalla, Mater. Sci. Eng. A 478, 108 (2008)

    Article  Google Scholar 

  23. J.B. le Graverend, J. Adrien, J. Cormier, Mater. Sci. Eng. A 695, 367 (2017)

    Article  Google Scholar 

  24. A. Epishin, T. Link, Philos. Mag. 84, 1979 (2004)

    Article  CAS  Google Scholar 

  25. G. Mälzer, R.W. Hayes, T. Mack, G. Eggeler, Metall. Mater. Trans. A 38, 314 (2007)

    Article  Google Scholar 

  26. J.B. Le Graverend, J. Cormier, S. Kruch, F. Gallerneau, J. Mendez, Metall. Mater. Trans. A 43, 3988 (2012)

    Article  CAS  Google Scholar 

  27. R.C. Reed, D.C. Cox, C.M.F. Rae, Mater. Sci. Eng. A 448, 88 (2007)

    Article  Google Scholar 

  28. M.E. Kassner, T.A. Hayes, Int. J. Plast. 19, 1715 (2003)

    Article  Google Scholar 

  29. J.W. Hancock, Met. Sci. 10, 319 (1976)

    Article  CAS  Google Scholar 

  30. R.S. Nelson, D.J. Mazey, R.S. Barnes, Philos. Mag. 11, 91 (1965)

    Article  CAS  Google Scholar 

  31. I.W. Chen, Metall. Trans. A 14, 2289 (1983)

    Article  Google Scholar 

  32. W.D. Nix, K.S. Yu, J.S. Wang, Metall. Trans. A 14, 563 (1983)

    Article  CAS  Google Scholar 

  33. W. Wang, Z. Suo, J. Mech, Phys. Solids. 45, 709 (1997)

    Article  CAS  Google Scholar 

  34. J. Cormier, P. Villechaise, X. Milhet, Mater. Sci. Eng. A 501, 61 (2009)

    Article  Google Scholar 

  35. Y. Liu, M. Kang, Y. Wu, M. Wang, M. Li, J. Yu, H. Gao, J. Wang, Int. J. Fatigue 108, 79 (2018)

    Article  CAS  Google Scholar 

  36. A. Cocks, M. Ashby, Prog. Mater. Sci. 27, 189 (1982)

    Article  CAS  Google Scholar 

  37. B. Camin, L. Hansen, Metals 10, 1034 (2020)

    Article  Google Scholar 

  38. R. Hales, A.C. Hill, Corros. Sci. 12, 843 (1972)

    Article  CAS  Google Scholar 

  39. M. Bensch, J. Preußner, R. Hüttner, G. Obigodi, S. Virtanen, J. Gabel, U. Glatzel, Acta Mater. 58, 1607 (2010)

    Article  CAS  Google Scholar 

  40. J. Svoboda, F.D. Fischer, P. Fratzl, Acta Mater. 54, 3043 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51631008, 91860201, 51771204, 51911530154 and U1732131), the National Science and Technology Major Project (2017-VII-0008-0101, 2017-VI-0003-0073 and J2019-VI-0010) and the Key Deployment Projects of the Chinese Academy of Sciences (ZDRW-CN-2019-01). The authors were also grateful to Yan Wang for the assistance in creep experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian Shen or Jian Zhang.

Ethics declarations

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Wang, S., Shen, J. et al. Evolution of micro-pores in a single crystal nickel-based superalloy during 980 °C creep. Acta Metall. Sin. (Engl. Lett.) 35, 1397–1406 (2022). https://doi.org/10.1007/s40195-021-01371-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-021-01371-6

Keywords

Navigation