Skip to main content

Advertisement

Log in

3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Developing excellent pseudocapacitive electrodes with long cycle, high areal capacity and large rate has been challenged. 3D printing is an additive manufacture technique that has been explored to construct microelectrodes of arbitrary geometries for high-energy–density supercapacitors. In comparison with conventional electrodes with uncontrollable geometries and architectures, 3D-printed electrodes possess unique advantage in geometrical shape, mechanical properties, surface area, especially in ion transport and charge transfer. Thus, a desirable 3D electrode with ordered porous structures can be elaborately designed by 3D printing technology for improving electrochemical capacitance and rate capability. In this work, a designed, monolithic and ordered multi-porous 3D Cu conductive skeleton was manufactured through 3D direct ink writing technique and coated with CuO nanosheet arrays by an in situ electro-oxidation treatment. Benefiting from the highly ordered multi-porous nature, the 3D-structured skeleton can effectively enlarge the surface area, enhance the penetration of electrolyte and facilitate fast electron and ion transport. As a result, the 3D-printed Cu deposited with electro-oxidation-generated CuO (3DP Cu@CuO) electrodes demonstrates an ultrahigh areal capacitance of 1.690 F cm−2 (38.79 F cm−3) at a large current density of 30 mA cm−2 (688.59 mA cm−3), excellent lifespan of 88.20% capacitance retention after 10,000 cycles at 30 mA cm−2 and superior rate capability (94.31% retention, 2-30 mA cm−2). This design concept of 3D printing multi-porous current collector with hierarchical active materials provides a novel way to build high-performance 3D microelectrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K. Sun, T.S. Wei, B.Y. Ahn, J.Y. Seo, S.J. Dillon, J.A. Lewis, Adv. Mater. 25, 4539 (2013)

    Article  CAS  Google Scholar 

  2. M.R. Lukatskaya, B. Dunn, Y. Gogotsi, Nat. Commun. 7, 12647 (2016)

    Article  Google Scholar 

  3. P. Simon, Y. Gogotsi, B. Dunn, Science 343, 1210 (2014)

    Article  CAS  Google Scholar 

  4. G. Nagaraju, S.C. Sekhar, B. Ramulu, L.K. Bharat, G.S.R. Raju, Y.K. Han, J.S. Yu, Nano Energy 50, 448 (2018)

    Article  CAS  Google Scholar 

  5. D. Bae, T. Pedersen, B. Seger, M. Malizia, A.Y. Kuznetsov, O. Hansen, I. Chorkendorff, P.C.K. Vesborg, Energy Environ. Sci. 8, 650 (2015)

    Article  CAS  Google Scholar 

  6. M.J. Synodis, M. Kim, S.A.B. Allen, M.G. Allen, Mems Enabled Scalable Fabrication of High Performance Lithium Ion Battery Electrodes. Paper presented at 31st IEEE International Conference on Micro Electro Systems, Belfast, 21–25 January 2018

  7. G. Wang, L. Zhang, J. Zhang, Chem. Soc. Rev. 41, 797 (2012)

    Article  CAS  Google Scholar 

  8. C. Zhu, T. Liu, F. Qian, T.Y. Han, E.B. Duoss, J.D. Kuntz, C.M. Spadaccini, M.A. Worsley, Y. Li, Nano Lett. 16, 3448 (2016)

    Article  CAS  Google Scholar 

  9. J.R. Miller, P. Simon, Science 321, 651 (2008)

    Article  CAS  Google Scholar 

  10. P. Simon, Y. Gogotsi, Nanoscience and Technology: A Collection of Reviews from Nature Journals (World Scientific, Singapore, 2010), p. 320

    Google Scholar 

  11. J. Song, Y. Chen, K. Cao, Y. Lu, J.H. Xin, X. Tao, ACS Appl. Mater. Interfaces 10, 39839 (2018)

    Article  CAS  Google Scholar 

  12. L. Zhang, L. Dong, M. Li, P. Wang, J. Zhang, H. Lu, J. Mater. Chem. A 6, 1412 (2018)

    Article  CAS  Google Scholar 

  13. L. Ma, H. Fan, X. Wei, S. Chen, Q. Hu, Y. Liu, C. Zhi, W. Lu, J.A. Zapien, H. Huang, J. Mater. Chem. A 6, 19058 (2018)

    Article  CAS  Google Scholar 

  14. J. Xue, L. Gao, X. Hu, K. Cao, W. Zhou, W. Wang, Y. Lu, Nano-Micro Lett. 11, 46 (2019)

    Article  CAS  Google Scholar 

  15. C.J. Zhang, L. McKeon, M.P. Kremer, S.H. Park, O. Ronan, A. Seral-Ascaso, S. Barwich, C.O. Coileain, N. McEvoy, H.C. Nerl, B. Anasori, J.N. Coleman, Y. Gogotsi, V. Nicolosi, Nat. Commun. 10, 1795 (2019)

    Article  Google Scholar 

  16. L. Zhou, W. Ning, C. Wu, D. Zhang, W. Wei, J. Ma, C. Li, L. Chen, Adv. Mater. Technol. 4, 1800402 (2018)

    Article  Google Scholar 

  17. V.G. Rocha, E. Garcia-Tunon, C. Botas, F. Markoulidis, E. Feilden, E. D’Elia, N. Ni, M. Shaffer, E. Saiz, ACS Appl. Mater. Interfaces 9, 37136 (2017)

    Article  CAS  Google Scholar 

  18. K. Fu, Y. Wang, C. Yan, Y. Yao, Y. Chen, J. Dai, S. Lacey, Y. Wang, J. Wan, T. Li, Z. Wang, Y. Xu, L. Hu, Adv. Mater. 28, 2587 (2016)

    Article  CAS  Google Scholar 

  19. J. Wang, Q. Sun, X. Gao, C. Wang, W. Li, F.B. Holness, M. Zheng, R. Li, A.D. Price, X. Sun, T.K. Sham, X. Sun, ACS Appl. Mater. Interfaces 10, 39794 (2018)

    Article  CAS  Google Scholar 

  20. C. Zhang, K. Shen, B. Li, S. Li, S. Yang, J. Mater. Chem. A 6, 19960 (2018)

    Article  CAS  Google Scholar 

  21. J. Ding, K. Shen, Z. Du, B. Li, S. Yang, ACS Appl. Mater. Interfaces 9, 41871 (2017)

    Article  CAS  Google Scholar 

  22. K. Shen, H. Mei, B. Li, J. Ding, S. Yang, Adv. Energy Mater. 8, 1701527 (2018)

    Article  Google Scholar 

  23. X. Tang, C. Zhu, D. Cheng, H. Zhou, X. Liu, P. Xie, Q. Zhao, D. Zhang, T. Fan, Adv. Funct. Mater. 28, 1805057 (2018)

    Article  Google Scholar 

  24. H. Zheng, J. Li, X. Song, G. Liu, V.S. Battaglia, Electrochim. Acta 71, 258 (2012)

    Article  CAS  Google Scholar 

  25. J. Hu, Y. Jiang, S. Cui, Y. Duan, T. Liu, H. Guo, L. Lin, Y. Lin, J. Zheng, K. Amine, Adv. Energy Mater. 6, 1600856 (2016)

    Article  Google Scholar 

  26. S. Zhu, Z. Wang, F. Huang, H. Zhang, S. Li, J. Mater. Chem. A 5, 9960 (2017)

    Article  CAS  Google Scholar 

  27. Y. Liu, X. Cao, D. Jiang, D. Jia, J. Liu, J. Mater. Chem. A 6, 10474 (2018)

    Article  CAS  Google Scholar 

  28. J. Huang, H. Li, Y. Zhu, Q. Cheng, X. Yang, C. Li, J. Mater. Chem. A 3, 8734 (2015)

    Article  CAS  Google Scholar 

  29. X. Tang, H. Zhou, Z. Cai, D. Cheng, P. He, P. Xie, D. Zhang, T. Fan, ACS Nano 12, 3502 (2018)

    Article  CAS  Google Scholar 

  30. P. Jiang, Z. Ji, X. Zhang, Z. Liu, X. Wang, Prog. Addit. Manuf. 3, 65 (2018)

    Article  Google Scholar 

  31. J.J. Teo, Y. Chang, H.C. Zeng, Langmuir 22, 7369 (2006)

    Article  CAS  Google Scholar 

  32. Y. Li, X. Chen, L. Li, RSC Adv. 9, 33395 (2019)

    Article  CAS  Google Scholar 

  33. G. Wang, J. Huang, S. Chen, Y. Gao, D. Cao, J. Power Sources 196, 5756 (2011)

    Article  CAS  Google Scholar 

  34. M. Zhi, C. Xiang, J. Li, M. Li, N. Wu, Nanoscale 5, 72 (2013)

    Article  CAS  Google Scholar 

  35. L.Q. Mai, A. Minhas-Khan, X. Tian, K.M. Hercule, Y.L. Zhao, X. Lin, X. Xu, Nat. Commun. 4, 2923 (2013)

    Article  Google Scholar 

  36. Y.K. Hsu, Y.C. Chen, Y.G. Lin, J. Electroanal. Chem. 673, 43 (2012)

    Article  CAS  Google Scholar 

  37. S. Lei, Y. Liu, L. Fei, R. Song, W. Lu, L. Shu, C.L. Mak, Y. Wang, H. Huang, J. Mater. Chem. A 4, 14781 (2016)

    Article  CAS  Google Scholar 

  38. Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, J. Han, M. Wei, D.G. Evans, X. Duan, Nano Energy 20, 294 (2016)

    Article  CAS  Google Scholar 

  39. A. Paolella, R. Brescia, M. Prato, M. Povia, S. Marras, L. De Trizio, A. Falqui, L. Manna, C. George, ACS Appl. Mater. Interfaces 5, 2745 (2013)

    Article  CAS  Google Scholar 

  40. S.E. Moosavifard, M.F. El-Kady, M.S. Rahmanifar, R.B. Kaner, M.F. Mousavi, ACS Appl. Mater. Interfaces 7, 4851 (2015)

    Article  CAS  Google Scholar 

  41. Z. Wang, Q.E. Zhang, S. Long, Y. Luo, P. Yu, Z. Tan, J. Bai, B. Qu, Y. Yang, J. Shi, H. Zhou, Z.Y. Xiao, W. Hong, H. Bai, ACS Appl. Mater. Interfaces 10, 10437 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51771236, 51901249 and U1904216), the Science Fund for Distinguished Young Scholars of Hunan Province (No. 2018JJ1038).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuejiao Chen or Libao Chen.

Additional information

Available online at https://link.springer.com/journal/40195

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 5097 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Chen, Y. & Chen, L. 3D Printing Engineered Multi-porous Cu Microelectrodes with In Situ Electro-Oxidation Growth of CuO Nanosheets for Long Cycle, High Capacity and Large Rate Supercapacitors. Acta Metall. Sin. (Engl. Lett.) 34, 85–97 (2021). https://doi.org/10.1007/s40195-020-01097-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01097-x

Keywords

Navigation