Skip to main content
Log in

In Situ Transmission Electron Microscopy Observations of the Growth Process of Fe3O4–Ag Nanoparticles

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The properties of nanocrystals are highly dependent on their morphology, composition and structure. To obtain full control over their properties, the behavior of nanocrystals under external stimuli, such as heat treatment, needs to be understood. Herein, to in situ observe their microstructure and morphology changes, Fe3O4–Ag heterodimers were selected as a model system. Their structural changes after heat treatment were investigated by in situ transmission electron microscopy. A combination of real-time imaging with elemental analysis enabled observation of the transformation of Fe3O4–Ag heterodimers having a loose interface configuration to those with a Janus structure at the atomic scale after heating from room temperature to 600 °C. After incubation at 600 °C for 32 min, two kinds of Janus structures could be seen, including a clear linear interface in the Fe3O4–Ag heterodimers and a semi-crescent-shaped interface between the Ag and Fe3O4 nanoparticles (NPs). These dynamic observations provide unique insights into NP growth mechanisms, which are essential for understanding and controlling the structure and morphology of nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. S. Sun, C.B. Murray, D. Weller, L. Folks, A. Moser, Science 287, 1989 (2000)

    Article  CAS  Google Scholar 

  2. C. Rong, H. Zhang, X. Du, J. Zhang, S. Zhang, B. Shen, J. Appl. Phys. 96, 3921 (2004)

    Article  CAS  Google Scholar 

  3. H. Zeng, J. Li, J.P. Liu, Z.L. Wang, S. Sun, Nature 420, 395 (2002)

    Article  CAS  Google Scholar 

  4. W. Yang, W. Lei, Y. Yu, W. Zhu, T.A. George, X.Z. Li, D.J. Sellmyer, S. Sun, J. Mater. Chem. C 3, 7075 (2015)

    Article  CAS  Google Scholar 

  5. C. Xu, Z. Yuan, N. Kohler, J. Kim, M.A. Chung, S. Sun, J. Am. Chem. Soc. 131, 15346 (2009)

    Article  CAS  Google Scholar 

  6. S. Mornet, S. Vasseur, F. Grasset, P. Veverk, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog. Solid State Chem. 34, 237 (2006)

    Article  CAS  Google Scholar 

  7. C. Sun, J.S. Lee, M. Zhang, Adv. Drug Deliv. Rev. 60, 1252 (2008)

    Article  CAS  Google Scholar 

  8. Z. Karimi, L. Karimi, H. Shokrollahi, Mater. Sci. Eng., C 33, 2465 (2013)

    Article  CAS  Google Scholar 

  9. B. Tural, N. Özkan, M. Volkan, J. Phys. Chem. Solids 70, 860 (2009)

    Article  CAS  Google Scholar 

  10. Z.P. Chen, Y. Zhang, S. Zhang, J.G. Xia, J.W. Liu, K. Xu, N. Gu, Colloids Surf. A 316, 210 (2008)

    Article  CAS  Google Scholar 

  11. K. McNamara, S.A.M. Tofail, Biomedical Applications of Nanoalloys, in Nanoalloys: From Fundamentals to Emergent Applications (Elsevier, Oxford, 2013)

    Google Scholar 

  12. A.P. LaGrow, M.R. Ward, D.C. Lloyd, P.L. Gai, E.D. Boyes, J. Am. Chem. Soc. 139, 179 (2017)

    Article  CAS  Google Scholar 

  13. D. Li, Z.L. Wang, Z. Wang, J. Phys. Chem. C 121, 1387 (2017)

    Article  CAS  Google Scholar 

  14. X. Huang, Z. Liu, M.M. Millet, J. Dong, M. Plodine, F. Ding, R. Schlog, M.G. Willinger, ACS Nano 12, 7197 (2018)

    Article  CAS  Google Scholar 

  15. Z. Wei, Z. Zhou, M. Yang, C. Lin, Z. Zhao, D. Huang, Z. Chen, J. Gao, J. Mater. Chem. 21, 16344 (2011)

    Article  CAS  Google Scholar 

  16. Q. Zheng, Z.R. Zhang, J. Du, L.L. Lin, W.X. Xia, J. Zhang, B.R. Bian, J.P. Liu, J. Mater. Sci. Technol. 35, 560 (2019)

    Article  Google Scholar 

  17. J. He, B. Bian, Q. Zheng, J. Du, W. Xia, J. Zhang, A. Yan, J.P. Liu, Green Chem. 18, 417 (2016)

    Article  CAS  Google Scholar 

  18. B. Bian, J. He, J. Du, W. Xia, J. Zhang, J.P. Liu, W. Li, C. Hu, A. Yan, Nanoscale 7, 975 (2015)

    Article  CAS  Google Scholar 

  19. X. Huang, T. Jones, H. Fan, M.G. Willinger, Adv. Mater. Interfaces 3, 1600751 (2016)

    Article  CAS  Google Scholar 

  20. Y. Jiang, H.B. Li, Z.M. Wu, W.Y. Ye, H. Zhang, Y. Wang, C.H. Sun, Z. Zhang, Angew. Chem. Int. Ed. 55, 12427 (2016)

    Article  CAS  Google Scholar 

  21. A.O. Yalcin, Z.C. Fan, B. Goris, W.F. Li, R.S. Koster, C.M. Fang, A. van Blaaderen, M. Casavola, F.D. Tichelaar, S. Blas, G. van Tendeloo, T.J.H. Vlugt, D. Vanmaekelbergh, H.W. Zanberge, M.A. van Huis, Nano Lett. 14, 3661 (2014)

    Article  CAS  Google Scholar 

  22. L. Zhang, Y.H. Dou, H.C. Gu, J. Colloid Interface Sci. 297, 660 (2006)

    Article  CAS  Google Scholar 

  23. D. Yu, X. Sun, J. Zou, Z. Wang, F. Wang, K. Tang, J. Phys. Chem. B 110, 21667 (2006)

    Article  CAS  Google Scholar 

  24. M.A. Asoro, D. Kovar, P.J. Ferreira, ACS Nano 7, 7844 (2013)

    Article  CAS  Google Scholar 

  25. Q. Jiang, S. Zhang, M. Zhao, Mater. Chem. Phys. 82, 225 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Zhejiang Provincial Natural Science Foundation of China (No. LD19E010001) and the National Natural Science Foundation of China (Nos. 51771219, 51771095 and 51771220).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Zheng, Bao-Ru Bian or Juan Du.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, JH., Liu, JJ., Zheng, Q. et al. In Situ Transmission Electron Microscopy Observations of the Growth Process of Fe3O4–Ag Nanoparticles. Acta Metall. Sin. (Engl. Lett.) 33, 1283–1288 (2020). https://doi.org/10.1007/s40195-020-01053-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01053-9

Keywords

Navigation