Skip to main content
Log in

Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr–1Si–0.5Nb Ferritic Heat-Resistant Stainless Steel

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

17Cr–1Si–0.5Nb–1.2Cu ferritic heat-resistant stainless steel was aged at 750 °C from 10 min to 30 h to simulate time aging and study the microstructural evolution and its effect on corrosion behavior by using optical microscopy, scanning electron microscopy, transmission electron microscopy, potentiodynamic polarization, electrochemical impedance spectroscopy, and the Mott–Schottky approach. Four types of precipitates were discovered, including ε-Cu, NbC, Fe3Nb3C, and Fe2Nb-type Laves phase. The nano-sized ε-Cu phase forms first, and its fraction follows the parabolic law change and is the largest. Compared to NbC and Fe3Nb3C particles, the coarsening of the Laves phase is the most pronounced. The aging process is divided into three parts: early-aged (0–5 h), peak-aged (5 h), and over-aged (5–30 h). However, the corrosion resistance is reduced in the early-aged stage of 0–2 h. Further extending the aging time to 30 h, the corrosion resistance is gradually improved. This change may be related to the competitive relationship between the beneficial effects of the Cu-rich phase and the harmful effects of Nb-containing particles. The dissolved Cu on the surface becomes more effective for the suppression of the anodic dissolution by the formation of ionic compounds of chlorine, thereby reducing the deterioration of corrosion resistance caused by Nb-rich precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. H.P. Qu, Y.P. Lang, H.T. Chen, F. Rong, X.F. Kang, C.Q. Yang, H.B. Qin, Mater. Sci. Eng. A 534, 436 (2012)

    CAS  Google Scholar 

  2. X. Li, J. Shu, L.Q. Chen, H.Y. Bi, Acta Metall. Sin. -Engl. Lett. 27, 501 (2014)

    CAS  Google Scholar 

  3. J. Han, H. Li, F. Barbaro, L. Jiang, Z. Zhu, H. Xu, L. Ma, Mater. Sci. Eng. A 63, 238 (2014)

    CAS  Google Scholar 

  4. H.H. Lu, H.K. Guo, Y. Luo, Z.G. Liu, W.Q. Li, J.C. Li, W. Liang, Mater. Des. 160, 999 (2018)

    CAS  Google Scholar 

  5. T. Xi, L. Yin, C.G. Yang, K. Yang, Acta Metall. Sin. -Engl. Lett. 32, 1537 (2019)

    CAS  Google Scholar 

  6. P. Ou, L. Li, X.F. Xie, J. Sun, Acta Metall. Sin. -Engl. Lett. 28, 1336 (2015)

    CAS  Google Scholar 

  7. H. Luo, Q. Yu, C.F. Dong, G. Sha, Z.B. Liu, J.X. Liang, L. Wang, G. Han, X.G. Li, Corros. Sci. 139, 185 (2018)

    CAS  Google Scholar 

  8. M.W. Anjum, D. Wen, Q. Wang, R. Zhang, C. Dong, P.K. Liaw, J. Nucl. Mater. 522, 19 (2019)

    CAS  Google Scholar 

  9. E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, Electrochim. Acta 55, 5028 (2010)

    CAS  Google Scholar 

  10. M. Seo, G. Hultquist, C. Leygraf, N. Sato, Corros. Sci. 26, 949 (1986)

    CAS  Google Scholar 

  11. W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, Y.C. Liu, J. Mater. Sci. Technol. 36, 84 (2020)

    Google Scholar 

  12. H.H. Lu, Y. Luo, H.K. Guo, W.Q. Li, J.C. Li, W. Liang, Mater. Sci. Eng. A 735, 31 (2018)

    CAS  Google Scholar 

  13. M. Murayama, Y. Katayama, K. Hono, Metall. Mater. Trans. A 30, 345 (1999)

    Google Scholar 

  14. S.H. Jeon, S.T. Kim, I.S. Lee, J.S. Kim, K.T. Kim, Y.S. Park, Corros. Sci. 66, 217 (2013)

    CAS  Google Scholar 

  15. T. Juuti, L. Rovatti, D. Porter, G. Angella, J. Kömi, Mater. Sci. Eng. A 726, 45 (2018)

    CAS  Google Scholar 

  16. G.M. Sim, J.C. Ahn, S.C. Hong, K.J. Lee, K.S. Lee, Mater. Sci. Eng. A 396, 159 (2005)

    Google Scholar 

  17. Y. Kang, W.M. Mao, Y.J. Chen, J. Jing, M. Cheng, Mater. Sci. Eng. A 677, 453 (2016)

    CAS  Google Scholar 

  18. J.K. Kim, Y.H. Kim, K.Y. Kim, Scr. Mater. 63, 449 (2010)

    CAS  Google Scholar 

  19. J.K. Kim, Y.H. Kim, S.H. Uhm, J.S. Lee, K.Y. Kim, Corros. Sci. 51, 2716 (2009)

    CAS  Google Scholar 

  20. Y.J. Kim, S.W. Kim, H.B. Kim, C.N. Park, Y.I. Choi, C.J. Park, Corros. Sci. 152, 202 (2019)

    CAS  Google Scholar 

  21. J. Jiang, D. Xu, T. Xi, M.B. Shahzad, M.S. Khan, J. Zhao, X. Fan, C. Yang, T. Gu, K. Yang, Corros. Sci. 113, 46 (2016)

    CAS  Google Scholar 

  22. B. Li, Q.L. Pan, C.P. Chen, Z.M. Yin, Trans. Nonferrous Met. Soc. China 26, 2263 (2016)

    CAS  Google Scholar 

  23. H. Wei, Y.H. Wei, L.F. Hou, N. Dang, Corros. Sci. 111, 382 (2016)

    CAS  Google Scholar 

  24. W. Lu, X. Hua, X. Zhou, J. Huang, X. Peng, J. Alloys Compd. 701, 993 (2017)

    CAS  Google Scholar 

  25. T. Xi, M. Babar Shahzad, D. Xu, J. Zhao, C. Yang, M. Qi, K. Yang, Mater. Sci. Eng. A 675, 243 (2016)

    CAS  Google Scholar 

  26. H. Tsuchiya, S. Fujimoto, O. Chihara, T. Shibata, Electrochim. Acta 47, 4357 (2002)

    CAS  Google Scholar 

  27. X.Y. San, B. Zhang, B. Wu, X.X. Wei, E.E. Oguzie, X.L. Ma, Corros. Sci. 130, 143 (2018)

    CAS  Google Scholar 

  28. S. Ningshen, U.K. Mudali, V.K. Mittal, H.S. Khatak, Corros. Sci. 49, 481 (2007)

    CAS  Google Scholar 

  29. Z. Feng, X. Cheng, C. Dong, L. Xu, X.J.C.S. Li, Corros. Sci. 52, 3646 (2010)

    CAS  Google Scholar 

  30. S. Zhang, H. Li, Z. Jiang, B. Zhang, Z. Li, J. Wu, S. Fan, H. Feng, H. Zhu, Mater. Charact. 152, 141 (2019)

    CAS  Google Scholar 

  31. H. Yan, H. Bi, X. Li, Z. Xu, Mater. Charact. 60, 204 (2009)

    CAS  Google Scholar 

  32. Z. Dong, N. Liu, W.Q. Hu, Z.Q. Ma, C. Li, C.X. Liu, Q.Y. Guo, Y.C. Liu, J. Mater. Sci. Technol. 36, 118 (2020)

    Google Scholar 

  33. M.P. Sello, W.E. Stumpf, Mater. Sci. Eng. A 527, 5194 (2010)

    Google Scholar 

  34. M.P. Sello, W.E. Stumpf, Mater. Sci. Eng. A 528, 1840 (2011)

    Google Scholar 

  35. C.R. Clayton, Y.C. Lu, J. Electrochem. Soc. 133, 2465 (1986)

    CAS  Google Scholar 

  36. C.O.A. Olsson, Corros. Sci. 37, 467 (1995)

    CAS  Google Scholar 

  37. E.E. Oguzie, J. Li, Y. Liu, D. Chen, Y. Li, K. Yang, F. Wang, J. Mater. Sci. 45, 5902 (2010)

    CAS  Google Scholar 

  38. T. Ujiro, S. Satoh, R.W. Staehle, W.H. Smyrl, Corros. Sci. 43, 2185 (2001)

    CAS  Google Scholar 

  39. Z.X. Zhang, G. Lin, Z. Xu, J. Mater. Process. Technol. 205, 419 (2008)

    CAS  Google Scholar 

  40. J.J. Guo, S. Masahiro, S. Norio, J. Chin. Soc. Corros. Prot. 10, 239 (1990)

    Google Scholar 

  41. J. Banas, A. Mazurkiewicz, Mater. Sci. Eng. A 277, 183 (2000)

    Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China (Nos. 51604034 and 51974032), the Science and Technology Project of Jilin Education Department in 13th Five-Year (No. JJKH20181008KJ), and the Science and Technology Development Program of Jilin Province (No. 20190302003GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Han or Xu Ran.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Han, Y., Wang, W. et al. Influence of Aging Time on Microstructure and Corrosion Behavior of a Cu-Bearing 17Cr–1Si–0.5Nb Ferritic Heat-Resistant Stainless Steel. Acta Metall. Sin. (Engl. Lett.) 33, 1289–1301 (2020). https://doi.org/10.1007/s40195-020-01049-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-020-01049-5

Keywords

Navigation