Skip to main content
Log in

Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

A CoCrFeMnNi high-entropy alloy with a high content of carbon was synthesized, and its hot deformation behavior was studied at the temperatures 800–1000 °C at the strain rates ranging from 0.001 to 0.1 s−1. As-prepared alloy is a face-centered cubic-structured solid solution, with a large amount of carbides residing at grain boundaries. True stress–strain curves were employed to develop the constitutive equation of apparent activation energy. The apparent activation energy (Q) was found to be 423 kJ mol−1, indicating a dynamic flow softening behavior. The size of dynamic recrystallized (DRXed) grains increases with increasing the temperature or decreasing the strain rate. A processing map was sketched on the basis of the flow stress. The temperature range of 900–1000 °C and 10−3–10−2.6 s−1 strain rate were found to be the optimum hot-forging parameter. With increasing temperature or decreasing strain rate, the volume fraction of fine carbides (≤ 1 μm) increases. A lot of coarse carbides can be found in the matrix after deformation at 800 °C, which leads to a high hardness value of 345 HV. The carbides after deformation at 1000 °C are mainly nano-sized M7C3 and M23C6, which can promote the nucleation of DRX.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. K. Fukaura, Y. Yokoyama, D. Yokoi, N. Tsujii, K. Ono, Metall. Mater. Trans. A 35, 1289 (2004)

    Article  Google Scholar 

  2. I. Picas, N. Cuadrado, D. Casellas, A. Goez, L. Llanes, in Fatigue 2010, ed. by P. Lukas (Elsevier Science Bv, Amsterdam, 2010), p. 1777

    Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299 (2004)

    Article  Google Scholar 

  4. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 36, 881 (2005)

    Article  Google Scholar 

  5. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103, 41 (2007)

    Article  Google Scholar 

  6. A. Li, X. Zhang, Acta Metall. Sin. (Engl. Lett.) 22, 219 (2009)

    Article  Google Scholar 

  7. X. Yang, X. Wang, X. Ling, D. Wang, Results Phys. 7, 1412 (2017)

    Article  Google Scholar 

  8. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, R.O. Ritchie, Science 345, 1153 (2014)

    Article  Google Scholar 

  9. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, T.G. Langdon, Mater. Sci. Eng. A 705, 411 (2017)

    Article  Google Scholar 

  10. X.L. Shang, Z.J. Wang, Q.F. Wu, J.C. Wang, J.J. Li, J.K. Yu, Acta Metall. Sin. (Engl. Lett.) 32, 41 (2019)

    Article  Google Scholar 

  11. Y. Lu, H. Huang, X. Gao, C. Ren, J. Gao, H. Zhang, S. Zheng, Q. Jin, Y. Zhao, C. Lu, T. Wang, T. Li, J. Mater. Sci. Technol. 35, 369 (2019)

    Article  Google Scholar 

  12. B. Zhang, Y. Zhang, S. Guo, J. Mater. Sci. 53, 14729 (2018)

    Article  Google Scholar 

  13. W. Li, P.K. Liaw, Y. Gao, Intermetallics 99, 69 (2018)

    Article  Google Scholar 

  14. Y.Z. Tian, S.J. Sun, H.R. Lin, Z.F. Zhang, J. Mater. Sci. Technol. 35, 334 (2019)

    Article  Google Scholar 

  15. S.G. Ma, Y. Zhang, Mater. Sci. Eng. A 532, 480 (2012)

    Article  Google Scholar 

  16. C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Trans. A 35, 1465 (2004)

    Article  Google Scholar 

  17. A. Zaddach, R. Scattergood, C. Koch, Mater. Sci. Eng. A 636, 373 (2015)

    Article  Google Scholar 

  18. H. Zuhailawati, T.C. Geok, P. Basu, Mater. Des. 31, 2211 (2010)

    Article  Google Scholar 

  19. S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Mater. Sci. Eng. A 527, 745 (2010)

    Article  Google Scholar 

  20. S. Fang, W. Chen, Z. Fu, Mater. Des. 54, 973 (2014)

    Article  Google Scholar 

  21. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, Z.Q. Hu, J. Alloys Compd. 509, 3476 (2011)

    Article  Google Scholar 

  22. T.D. Huang, L. Jiang, C.L. Zhang, H. Jiang, Y.P. Lu, T.J. Li, Sci. China Technol. Sci. 61, 117 (2018)

    Article  Google Scholar 

  23. Z. Wu, C.M. Parish, H. Bei, J. Alloys Compd. 647, 815 (2015)

    Article  Google Scholar 

  24. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187 (2016)

    Article  Google Scholar 

  25. L.B. Chen, R. Wei, K. Tang, J. Zhang, F. Jiang, L. He, J. Sun, Mater. Sci. Eng. A 716, 150 (2018)

    Article  Google Scholar 

  26. S. Orhan, A.O. Er, N. Camuşcu, E. Aslan, NDT E Int. 40, 121 (2007)

    Article  Google Scholar 

  27. N. Camuşcu, E. Aslan, J. Mater. Process. Technol. 170, 121 (2005)

    Article  Google Scholar 

  28. E.O. Ezugwu, Z.M. Wang, A.R. Machado, J. Mater. Process. Technol. 86, 1 (1999)

    Article  Google Scholar 

  29. X. Qin, D. Huang, X. Yan, X. Zhang, M. Qi, S. Yue, J. Alloys Compd. 770, 507 (2019)

    Article  Google Scholar 

  30. M. Saadati, R.A. Khosroshahi, G. Ebrahimi, M. Jahazi, Mater. Charact. 131, 234 (2017)

    Article  Google Scholar 

  31. J. Li, B. Gao, S. Tang, B. Liu, Y. Liu, Y. Wang, J. Wang, J. Alloys Compd. 747, 571 (2018)

    Article  Google Scholar 

  32. C. Zener, J.H. Hollomon, J. Appl. Phys. 15, 22 (1944)

    Article  Google Scholar 

  33. N.R. Jaladurgam, A.K. Kanjarla, Mater. Sci. Eng. A 712, 240 (2018)

    Article  Google Scholar 

  34. F. Kong, Y. Chen, D. Zhang, S. Zhang, Mater. Sci. Eng. A 539, 107 (2012)

    Article  Google Scholar 

  35. N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, G.A. Salishchev, J. Alloys Compd. 687, 59 (2016)

    Article  Google Scholar 

  36. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, H.C. Chen, Mater. Lett. 61, 1 (2007)

    Article  Google Scholar 

  37. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, J. Alloys Compd. 589, 61 (2014)

    Article  Google Scholar 

  38. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, Z. Fu, Intermetallics 56, 24 (2015)

    Article  Google Scholar 

  39. S. Liu, Q. Pan, H. Li, Z. Huang, K. Li, X. He, X. Li, J. Mater. Sci. 54, 1 (2019)

    Article  Google Scholar 

  40. N. Stepanov, M. Tikhonovsky, N. Yurchenko, D. Zyabkin, M. Klimova, S. Zherebtsov, A. Efimov, G. Salishchev, Intermetallics 59, 8 (2015)

    Article  Google Scholar 

  41. G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, H. Fu, J. Mater. Sci. Technol. 35, 578 (2019)

    Article  Google Scholar 

  42. Z. Wang, Q. Fang, J. Li, B. Liu, Y. Liu, J. Mater. Sci. Technol. 34, 349 (2018)

    Article  Google Scholar 

  43. K. Evans, Treatise on Materials Science & Technology (Elsevier, Amsterdam, 1974), p. 113

    Book  Google Scholar 

  44. B. Liu, J. Wang, Y. Liu, Q. Fang, Y. Wu, S. Chen, C.T. Liu, Intermetallics 75, 25 (2016)

    Article  Google Scholar 

  45. S. Chen, D. Fu, H. Luo, Y. Wang, J. Teng, H. Zhang, Vacuum 149, 297 (2018)

    Article  Google Scholar 

  46. R.R. Eleti, T. Bhattacharjee, L. Zhao, P.P. Bhattacharjee, N. Tsuji, Mater. Chem. Phys. 210, 176 (2018)

    Article  Google Scholar 

  47. K.Y. Tsai, M.H. Tsai, J.W. Yeh, Acta Mater. 61, 4887 (2013)

    Article  Google Scholar 

  48. S. Jiang, Y. Zhang, S. Wang, C. Zhao, J. Mater. Sci. 52, 3199 (2017)

    Article  Google Scholar 

  49. T.Y. Kwak, W.J. Kim, J. Mater. Sci. Technol. 35, 181 (2019)

    Article  Google Scholar 

  50. G. Laplanche, P. Gadaud, O. Horst, F. Otto, G. Eggeler, E. George, J. Alloys Compd. 623, 348 (2015)

    Article  Google Scholar 

  51. Z. Wang, I. Baker, W. Guo, J.D. Poplawsky, Acta Mater. 126, 346 (2017)

    Article  Google Scholar 

  52. S. Zhang, W. Zeng, X. Gao, D. Zhou, Y. Lai, J. Alloys Compd. 684, 201 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 51601022), the National Key Research and Development plan of China (No. 2016YFB0700302) and the Science and Technology Planning Project of Hunan Province of China (No. 2015SK1002-1).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jian-Bo Li or Yun-Chang Xin.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YT., Li, JB., Xin, YC. et al. Hot Deformation Behavior and Hardness of a CoCrFeMnNi High-Entropy Alloy with High Content of Carbon. Acta Metall. Sin. (Engl. Lett.) 32, 932–943 (2019). https://doi.org/10.1007/s40195-019-00916-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-019-00916-0

Keywords

Navigation