Skip to main content
Log in

Effects of Solidification Conditions on Microstructure and Properties of High-Entropy Alloys from the CoCrFeMnNi Family

  • Technical Article
  • Published:
JOM Aims and scope Submit manuscript

Abstract

Alloys from the CoCrFeMnNi family remain the most studied austenitic high-entropy alloys. In this study, four alloys, i.e., Cantor alloy, A3S (modified nonequiatomic Cantor composition), both “pure” or doped with carbon (200 wt. ppm) and niobium (1.3 wt.%), were investigated. Firstly, alloys were induction cast using a cold-crucible method. The obtained ingots were molten, and rapidly solidified by melt-spinning at two cooling rates to obtain “ribbons”, typical of such processing. The effects of the solidification rate and the presence of carbon and niobium on the microstructure and hardness were studied. All the studied alloys show an fcc structure. The lattice parameter of the fcc phase increases with the increasing cooling rate, and with the addition of niobium and carbon, which confirms at least a partial presence of these elements in solid solution. Yet, TEM observations revealed the formation of nanometric NbC precipitates. The microstructure of melt-spun ribbons consists of equiaxed grains of a few micrometers in size. The higher cooling rate led to a small decrease in the grain size and a slight increase in hardness. Moreover, the hardness of doped alloys can be further improved by annealing (500°C for 24 h) through NbC precipitation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Google Scholar 

  2. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Google Scholar 

  3. J.-W. Yeh, Ann. Chim. Sci. Mater. 31, 633 (2006).

    Google Scholar 

  4. D.B. Miracle, and O.N. Senkov, Acta Mater. 122, 448 (2017).

    Google Scholar 

  5. J. Dąbrowa, M. Zajusz, W. Kucza, G. Cieślak, K. Berent, T. Czeppe, T. Kulik, and M. Danielewski, J. Alloys Compd. 783, 193 (2019).

    Google Scholar 

  6. K. Biswas, J.W. Yeh, P.P. Bhattacharjee, and J.T.M. DeHosson, Scr. Mater. 188, 54 (2020).

    Google Scholar 

  7. B. Gludovatz, D. Catoor, E.H. Chang, A. Hohenwarter, E.P. George, and R.O. Ritchie, Science (80-) 345, 1153 (2014).

    Google Scholar 

  8. O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Intermetallics 19, 698 (2011).

    Google Scholar 

  9. T.K. Tsao, A.C. Yeh, C.M. Kuo, K. Kakehi, H. Murakami, J.W. Yeh, and S.R. Jian, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  10. S.S. Nene, K. Liu, M. Frank, R.S. Mishra, R.E. Brennan, K.C. Cho, Z. Li, and D. Raabe, Sci. Rep. 7, 16167 (2017).

    Google Scholar 

  11. O. El-Atwani, N. Li, M. Li, A. Devaraj, J.K.S. Baldwin, M.M. Schneider, D. Sobieraj, J.S. Wróbel, D. Nguyen-Manh, S.A. Maloy, and E. Martinez, Sci. Adv. 5, eaav2002 (2019).

    Google Scholar 

  12. H. Luo, W. Lu, X. Fang, D. Ponge, Z. Li, and D. Raabe, Mater. Today 21, 1003 (2018).

    Google Scholar 

  13. Y. Shi, B. Yang, X. Xie, J. Brechtl, K.A. Dahmen, and P.K. Liaw, Corros. Sci. 119, 33 (2017).

    Google Scholar 

  14. F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Acta Mater. 112, 40 (2016).

    Google Scholar 

  15. E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Scr. Mater. 113, 106 (2016).

    Google Scholar 

  16. B. Cantor, Prog. Mater. Sci. 120, 100754 (2020).

    Google Scholar 

  17. J.B. Seol, J.W. Bae, Z. Li, J. Chan Han, J.G. Kim, D. Raabe, and H.S. Kim, Acta Mater. 151, 366 (2018).

    Google Scholar 

  18. N.D. Stepanov, N.Y. Yurchenko, M.A. Tikhonovsky, and G.A. Salishchev, J. Alloys Compd. 687, 59 (2016).

    Google Scholar 

  19. J. Li, B. Gao, Y. Wang, X. Chen, Y. Xin, S. Tang, B. Liu, Y. Liu, and M. Song, J. Alloys Compd. 792, 170 (2019).

    Google Scholar 

  20. K.S. Chung, P.M. Yiu, T.F. Hung, and C.H. Shek, J. Alloys Compd. 871, 159587 (2021).

    Google Scholar 

  21. J.Y. Ko, and S.I. Hong, J. Alloys Compd. 743, 115 (2018).

    Google Scholar 

  22. H. Cheng, H.Y. Wang, Y.C. Xie, Q.H. Tang, and P.Q. Dai, Mater. Sci. Technol. 33, 2032 (2017).

    Google Scholar 

  23. C. Scott, B. Remy, J.L. Collet, A. Cael, C. Bao, F. Danoixd, B. Malardc, and C. Curfse, Int. J. Mater. Res. 102, 538 (2011).

    Google Scholar 

  24. N. Gao, D.H. Lu, Y.Y. Zhao, X.W. Liu, G.H. Liu, Y. Wu, G. Liu, Z.T. Fan, Z.P. Lu, and E.P. George, J. Alloys Compd. 792, 1028 (2019).

    Google Scholar 

  25. E. Abbasi, and K. Dehghani, Mater. Sci. Eng. A 753, 224 (2019).

    Google Scholar 

  26. E. Abbasi, and K. Dehghani, J. Alloys Compd. 783, 292 (2019).

    Google Scholar 

  27. E. Abbasi, and K. Dehghani, Mater. Sci. Eng. A 772, 138812 (2020). https://doi.org/10.1016/j.msea.2019.138812

    Article  Google Scholar 

  28. E. Abbasi, and K. Dehghani, Mater. Sci. Eng. A 772, 138771 (2020). https://doi.org/10.1016/j.msea.2019.138771

    Article  Google Scholar 

  29. G. Bracq, M. Laurent-Brocq, C. Varvenne, L. Perrière, W.A. Curtin, J.M. Joubert, and I. Guillot, Acta Mater. 177, 266 (2019).

    Google Scholar 

  30. S.F. Liu, Y. Wu, H.T. Wang, J.Y. He, J.B. Liu, C.X. Chen, X.J. Liu, H. Wang, and Z.P. Lu, Intermetallics 93, 269 (2018).

    Google Scholar 

  31. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Acta Mater. 62, 105 (2014).

    Google Scholar 

  32. G. Qin, R. Chen, H. Zheng, H. Fang, L. Wang, Y. Su, J. Guo, and H. Fu, J. Mater. Sci. Technol. 35, 578 (2019).

    Google Scholar 

  33. A. Fraczkiewicz, French Patent, FR-1459567 (2014).

  34. M. Mroz, Design and Structural Optimization of a High Entropy Alloy (HEA) of the CoCrFeMnNi Family with High Mechanical Resistance, Ph.D. thesis, Ecole des Mines de Saint Etienne, France (2018).

  35. E.J. Lavernia, and T.S. Srivatsan, J. Mater. Sci. 45, 287 (2010).

    Google Scholar 

  36. A.G. Gillen, and B. Cantor, Acta Metall. 33, 1813 (1985).

    Google Scholar 

  37. J. Rogal, F. Morgiel, B.B. Stein, and J. Dutkiewicz, Mater. Charact. 148, 134 (2019).

    Google Scholar 

  38. C. Chen, H. Zhang, Y. Fan, W. Zhang, R. Wei, T. Wang, T. Zhang, and F. Li, J. Magn. Magn. Mater. 502, 166513 (2020).

    Google Scholar 

  39. T.P. Yadav, S. Mukhopadhyay, S.S. Mishra, N.K. Mukhopadhyay, and O.N. Srivastava, Philos. Mag. Lett. 97, 494 (2017).

    Google Scholar 

  40. C. Chen, H. Zhang, Y. Fan, R. Wei, W. Zhang, T. Wang, T. Zhang, K. Wu, F. Li, S. Guan, and J. Jiang, Intermetallics 122, 106778 (2020).

    Google Scholar 

  41. Q. Hu, S. Guo, J.M. Wang, Y.H. Yan, S.S. Chen, D.P. Lu, K.M. Liu, J.Z. Zou, and X.R. Zeng, Sci. Rep. 7, 1 (2017).

    Google Scholar 

  42. B. Sarac, V. Zadorozhnyy, E. Berdonosova, Y.P. Ivanov, S. Klyamkin, S. Gumrukcu, A.S. Sarac, A. Korol, D. Semenov, M. Zadorozhnyy, A. Sharma, A.L. Greer, and J. Eckert, RSC Adv. 10, 24613 (2020).

    Google Scholar 

  43. V.I. Tkatch, A.I. Limanovskii, S.N. Denisenko, and S.G. Rassolov, Mater. Sci. Eng. A 323, 91 (2002).

    Google Scholar 

  44. T. Gheiratmand, H.R.M. Hosseini, P. Davami, F. Ostadhossein, M. Song, and M. Gjoka, Nanoscale 5, 7520 (2013).

    Google Scholar 

  45. A. Druker, P. La Roca, P. Vermaut, P. Ochin, and J. Malarría, Mater. Sci. Eng. A 556, 936 (2012).

    Google Scholar 

  46. C. Chattopadhyay, A. Prasad, and B.S. Murty, Acta Mater. 153, 214 (2018).

    Google Scholar 

  47. M. Laurent-Brocq, L. Perrière, R. Pirès, F. Prima, P. Vermaut, and Y. Champion, Mater. Sci. Eng. A 696, 228 (2017).

    Google Scholar 

  48. F. Otto, N.L. Hanold, and E.P. George, Intermetallics 54, 39 (2014).

    Google Scholar 

  49. Y. Lin, B. Wu, S. Li, S. Mao, X. Liu, Y. Zhang, and L. Wang, Mater. Sci. Eng. A 621, 212 (2015).

    Google Scholar 

  50. Y. Lin, S. Mao, Z. Yan, Y. Zhang, and L. Wang, J. Alloys Compd. 651, 699 (2015).

    Google Scholar 

  51. D.J. Powell, R. Pilkington, and D.A. Miller, Acta Metall. 36, 713 (1988).

    Google Scholar 

  52. E. Ma, JOM 58, 49 (2006).

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the late Dr. Jerzy Latuch (WUT) for the preparation of alloys by melt-spinning. The authors gratefully thank the staff from the MINES lab: Olivier Valfort (XRD analyses), Claude Varillon (alloys elaboration), Gilles Blanc (metallographic preparation of samples), and Delphine Juhem (samples preparation for TEM analyses).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomasz Stasiak.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 4246 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stasiak, T., Oleszak, D. & Fraczkiewicz, A. Effects of Solidification Conditions on Microstructure and Properties of High-Entropy Alloys from the CoCrFeMnNi Family. JOM 74, 4842–4852 (2022). https://doi.org/10.1007/s11837-022-05543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-022-05543-2

Navigation