Skip to main content

Advertisement

Log in

Effect of Stress Ratio on the Fatigue Crack Propagation Behavior of the Nickel-based GH4169 Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The fatigue crack growth behavior of the newly developed GH4169 nickel-based alloy at a maximum stress of 700 MPa and different stress ratios was investigated in the present work employing the specimens with a single micro-notch at a frequency of 129 Hz at room temperature. The results demonstrate a typical three-stage process of fatigue crack propagation processing from the microstructurally small crack (MSC) stage to the physically small crack (PSC) stage, and finally to the long crack stage. The crack growth rate in the MSC stage is relatively high, while the crack growth rate in the PSC stage is relatively low. A linear function of crack-tip reversible plastic zone size was proposed to predict the crack growth rate, indicating an adequate prediction solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. K.J. Miller, Fatigue Fract. Eng. Mater. Struct. 10, 93 (1987)

    Article  Google Scholar 

  2. S. Pearson, Eng. Fract. Mech. 7, 235 (1975)

    Article  Google Scholar 

  3. W.L. Morris, Metall. Mater. Trans. 7, 1117 (1980)

    Article  Google Scholar 

  4. C. Santus, D. Taylor, Int. J. Fatigue 31, 1356 (2009)

    Article  Google Scholar 

  5. O. Jin, S. Mall, Mater. Sci. Eng. A 359, 356 (2003)

    Article  Google Scholar 

  6. H.T. Pang, R.A.S. Reed, Int. J. Fatigue 25, 1089 (2003)

    Article  Google Scholar 

  7. C.H. Qin, X.C. Zhang, S. Ye, S.T. Tu, Eng. Fract. Mech. 142, 140 (2015)

    Article  Google Scholar 

  8. A. Shyam, J.E. Allison, J.W. Jones, Acta Mater. 53, 1499 (2005)

    Article  Google Scholar 

  9. J.D. Caroll, W.Z. Abuzaid, J. Lambros, H. Sehitoglu, Int. J. Fract. 180, 223–241 (2013)

    Article  Google Scholar 

  10. A. Shyam, J.E. Allison, C.J. Szczepanski, T.M. Pollock, J.W. Jones, Acta Mater. 55, 6606 (2007)

    Article  Google Scholar 

  11. A. Pineau, D.L. McDowell, E.P. Busso, S.D. Antolovich, Acta Mater. 107, 484 (2016)

    Article  Google Scholar 

  12. D. Taylor, J.F. Knott, Fatigue Fract. Eng. Mater. Struct. 2, 147 (1981)

    Article  Google Scholar 

  13. P.D. Hobson, Fatigue Fract. Eng. Mater. Struct. 5, 323 (1982)

    Article  Google Scholar 

  14. K.S. Chan, J. Lankford, Acta Metall. 36, 193 (1988)

    Article  Google Scholar 

  15. K. Tokaji, T. Ogawa, Fatigue Fract. Eng. Mater. Struct. 13, 411 (1990)

    Article  Google Scholar 

  16. G.J. Deng, S.T. Tu, Q.Q. Wang, X.C. Zhang, F.Z. Xuan, Int. J. Fatigue 64, 14 (2014)

    Article  Google Scholar 

  17. B. Oberwinkler, Mater. Sci. Eng. A 528, 5983 (2011)

    Article  Google Scholar 

  18. M.J. Caton, R. John, W.J. Porter, M.E. Burba, Int. J. Fatigue 38, 36 (2012)

    Article  Google Scholar 

  19. A. Cadario, B. Alfredsson, Eng. Fract. Mech. 74, 2293 (2007)

    Article  Google Scholar 

  20. J.B. Jordon, J.D. Bernard, J.C. Newman Jr., Int. J. Fatigue 36, 206 (2012)

    Article  Google Scholar 

  21. B. Bhushan, IEEE Trans. Magn. 32, 1819 (1996)

    Article  Google Scholar 

  22. J.C. Newman Jr., I.S. Raju, Eng. Fract. Mech. 185, 1–2 (1981)

    Google Scholar 

  23. T. Connolley, P.A.S. Reed, Mater. Sci. Eng. A 340, 139 (2003)

    Article  Google Scholar 

  24. M. Fonte, F. Romeiro, M. Freitas, Int. J. Fatigue 29, 1971 (2007)

    Article  Google Scholar 

  25. X.P. Zhang, J.C. Li, C.H. Wang, L. Ye, Y.W. Mai, Int. J. Fatigue 24, 529 (2002)

    Article  Google Scholar 

  26. R. Akid, K.J. Miller, Fatigue Fract. Eng. Mater. Struct. 14, 637 (1991)

    Article  Google Scholar 

  27. Y.Q. Chen, S.P. Pan, M.Z. Zhou, D.Q. Yi, D.Z. Xu, Y.F. Xu, Mater. Sci. Eng. A 580, 150 (2013)

    Article  Google Scholar 

  28. W. Schaef, M. Marx, Acta Mater. 60, 2425 (2012)

    Article  Google Scholar 

  29. A. Roiko, J. Solin, Int. J. Fatigue 62, 154 (2014)

    Article  Google Scholar 

  30. A. Navarro, E.R.D.L. Rios, Fatigue Fract. Eng. Mater. Struct. 10, 169 (1987)

  31. S.T. Tu, X.C. Zhang, Ref. Module Mater. Sci. Mater. Eng. (2016). doi:10.1016/B978-0-12-803581-8.02852-6

  32. Y. Waku, T. Masumoto, T. Ogura, Trans. Jpn. Inst. Met. 25, 31 (1984)

    Article  Google Scholar 

  33. B. Budiansky, J.W. Hutchinson, J. Appl. Mech. Trans. 45, 267 (1978)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge gratefully for the financial support through the National Natural Science Foundations of China (Nos. 51371082 and 51322510) and 111 project. The author X.C. Zhang is also grateful for the support by Shanghai Pujiang Program, Young Scholar of the Yangtze River Scholars Program, and Shanghai Technology Innovation Program of SHEITC (No. CXY-2015-001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xian-Cheng Zhang or Shan-Tung Tu.

Additional information

Available online at http://link.springer.com/journal/40195.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, S., Gong, JG., Zhang, XC. et al. Effect of Stress Ratio on the Fatigue Crack Propagation Behavior of the Nickel-based GH4169 Alloy. Acta Metall. Sin. (Engl. Lett.) 30, 809–821 (2017). https://doi.org/10.1007/s40195-017-0567-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0567-6

Keywords

Navigation