Skip to main content
Log in

Effect of Al4C3 Particle Size Distribution in a Al–2.5C Master Alloy on the Refining Efficiency of the AZ31 Alloy

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The Al–2.5C master alloy is prepared to investigate the effect of the Al4C3 particle size distribution on the refining efficiency of the AZ31 alloy. The results indicate that the Al4C3 particles are potent nucleation substrates for primary α-Mg grains. With 1.0 wt% master alloy addition, the grain size is reduced from 204 to 70 μm. The grain refining efficiency of the Al4C3 particles on the AZ31 alloy is calculated to be 0.04%–0.75%. Such low refining efficiency is mainly attributed to the size distribution of the Al4C3 particles. The particle sizes are in the range from 0.18 to 7.08 μm, and their distribution is well fitted by a log-normal function. The optimum particle size range for significant grain refinement is proposed to be around 5.0–7.08 μm in the present conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Y. Ali, D. Qiu, B. Jiang, F.S. Pan, M.X. Zhang, J. Alloys Compd. 619, 639 (2015)

    Article  Google Scholar 

  2. Y. Yan, W.P. Deng, Z.F. Gao, J. Zhu, Z.J. Wang, X.W. Li, Acta Metall. Sin. (Engl. Lett.) 29, 163 (2016)

    Article  Google Scholar 

  3. D.H. Hou, S.M. Liang, R.S. Chen, C. Dong, E.H. Han, Acta Metall. Sin. (Engl. Lett.) 28, 115 (2015)

    Article  Google Scholar 

  4. A.A. Luo, Int. Mater. Rev. 49, 13 (2004)

    Article  Google Scholar 

  5. J.B. Lin, X.Y. Wang, W.J. Ren, X.X. Yang, Q.D. Wang, J. Mater. Sci. Technol. 32, 783 (2016)

    Article  Google Scholar 

  6. J. Du, M.H. Wang, M.C. Zhou, W.F. Li, J. Alloys Compd. 592, 313 (2014)

    Article  Google Scholar 

  7. L. Wang, Y.M. Kim, J.H. Lee, B.S. You, Mater. Sci. Eng., A 528, 1485 (2011)

    Article  Google Scholar 

  8. Y.M. Kim, L. Wang, B.S. You, J. Alloys Compd. 490, 695 (2010)

    Article  Google Scholar 

  9. G. Han, X.F. Liu, H.M. Ding, J. Alloys Compd. 467, 202 (2009)

    Article  Google Scholar 

  10. M. Qian, P. Cao, Scr. Mater. 52, 415 (2005)

    Article  Google Scholar 

  11. L. Lu, A.K. Dahle, D.H. StJohn, Scr. Mater. 53, 517 (2005)

    Article  Google Scholar 

  12. Q.L. Jin, J.P. Eom, S.G. Lim, W.W. Park, B.S. You, Scr. Mater. 49, 1129 (2003)

    Article  Google Scholar 

  13. T.J. Chen, X.D. Jiang, Y. Ma, Y.D. Li, Y. Hao, J. Alloys Compd. 496, 218 (2010)

    Article  Google Scholar 

  14. L. Lu, A.K. Dahle, D.H. StJohn, Scr. Mater. 54, 2197 (2006)

    Article  Google Scholar 

  15. Y.C. Pan, X.F. Liu, H. Yang, J. Mater. Sci. Technol. 21, 822 (2005)

    Google Scholar 

  16. X.T. Liu, H. Hao, J. Alloys Compd. 623, 266 (2015)

    Article  Google Scholar 

  17. S.F. Liu, Y. Chen, H. Han, J. Alloys Compd. 624, 266 (2015)

    Article  Google Scholar 

  18. T.E. Quested, A.L. Greer, Acta Mater. 53, 2683 (2005)

    Article  Google Scholar 

  19. A. Tronche, A.L. Greer, Philos. Mag. Lett. 81, 321 (2001)

    Article  Google Scholar 

  20. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, D.J. Bristow, Acta Mater. 48, 2823 (2000)

    Article  Google Scholar 

  21. T.E. Quested, A.L. Greer, Acta Mater. 52, 3859 (2004)

    Article  Google Scholar 

  22. M. Sun, M.A. Easton, D.H. StJohn, G.H. Wu, T.B. Abbott, W.J. Ding, Adv. Eng. Mater. 15, 373 (2013)

    Article  Google Scholar 

  23. E.E. Underwood, E.A. Starke, American Society for Testing and Materials, 1979, pp. 633–682

  24. K. Li, Z.G. Sun, F. Wang, N.G. Zhou, X.W. Hu, Appl. Surf. Sci. 270, 584 (2013)

    Article  Google Scholar 

  25. S. Nimityongskul, M. Jones, H. Choi, R. Lakes, S. Kou, X.C. Li, Mater. Sci. Eng. A 527, 2104 (2010)

    Article  Google Scholar 

  26. A.R. Kennedy, D.P. Weston, M.I. Jones, C. Enel, Scr. Mater. 42, 1187 (2000)

    Article  Google Scholar 

  27. T.E. Quested, A.L. Greer, P.S. Cooper, Mater. Sci. Forum 396–402, 53 (2002)

    Article  Google Scholar 

  28. W.C. Yang, L. Liu, J. Zhang, S.X. Ji, Z.Y. Fan, Mater. Lett. 160, 263 (2015)

    Article  Google Scholar 

  29. T.J. Chen, R.Q. Wang, H.J. Huang, Y. Ma, Y. Hao, Trans. Nonferrous Met. Soc. China 22, 1533 (2012)

    Article  Google Scholar 

  30. E. Wang, T. Gao, J.F. Nie, X.F. Liu, J. Alloys Compd. 594, 7 (2014)

    Article  Google Scholar 

  31. D.H. StJohn, M. Qian, M.A. Easton, P. Cao, Acta Mater. 59, 4907 (2011)

    Article  Google Scholar 

  32. M. Qian, D.H. StJohn, M.T. Frost, Scr. Mater. 50, 1115 (2004)

    Article  Google Scholar 

  33. D. Qiu, M.X. Zhang, J. Alloys Compd. 488, 260 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the National Key Research and Development Program of China (No. 2016YFB0701204) and the project (DUT15JJ (G) 01) supported by the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Hao.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, YZ., Liu, XT. & Hao, H. Effect of Al4C3 Particle Size Distribution in a Al–2.5C Master Alloy on the Refining Efficiency of the AZ31 Alloy. Acta Metall. Sin. (Engl. Lett.) 30, 505–512 (2017). https://doi.org/10.1007/s40195-017-0556-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-017-0556-9

Keywords

Navigation