Skip to main content
Log in

Prediction of Forming Limit Diagrams for Materials with HCP Structure

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The forming limit diagram (FLD) is an important tool to be used when characterizing the formability of metallic sheets used in metal forming processes. Experimental measurement and determination of the FLD is time-consuming and therefore the analytical prediction based on theory of plasticity and instability criteria allows a direct and efficient methodology to obtain critical values at different loading paths, thus carrying significant practical importance. However, the accuracy of the plastic instability prediction is strongly dependent on the choice of the material constitutive model [13]. Particularly for materials with hexagonal close packed (HCP) crystallographic structure, they have a very limited number of active slip systems at room temperature and demonstrate a strong asymmetry between yielding in tension and compression [4, 5]. Not only the magnitude of the yield locus changes, but also the shape of the yield surface is evolving during the plastic deformation [4]. Conventional phenomenological constitutive models of plasticity fail to capture this unconventional mechanical behavior [4, 6]. Cazacu and Plunkett [6] have proposed generic yield criteria, by using the transformed principal stress, to account for the initial plastic anisotropy and strength differential (SD) effect simultaneously. In this contribution, a generic FLD MATLAB script was developed based on Marciniak–Kuczynski analytical theory and applied to predict the localized necking. The influence of asymmetrical effect on the FLD was evaluated. Several yield functions such as von Mises, Hill, Barlat89, and Cazacu06 were incorporated into analysis. The paper also presents and discusses the influence of different hardening laws on the formability of materials with HCP crystal structures. The findings indicate that the plastic instability theory coupled with Cazacu model can adequately predict the onset of localized necking for HCP materials under different strain paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. N. Manopulo, P. Hora, P. Peters, M. Gorji, F. Barlat, Int. J. Plast. (2015), in press. doi:10.1016/j.ijplas.2015.02.003

  2. J. Cao, H. Yao, A. Karafillis, M.C. Boyce, Int. J. Plast 16, 1105 (2000)

    Article  Google Scholar 

  3. C.E. Dreyer, W.V. Chiu, R.H. Wagoner, S.R. Agnew, J. Mater. Process. Technol. 210, 37 (2010)

    Article  Google Scholar 

  4. M.E. Nixon, O. Cazacu, Int. J. Plast 26, 516 (2010)

    Article  Google Scholar 

  5. O. Cazacu, F. Barlat, Int. J. Plast 20, 2027 (2004)

    Article  Google Scholar 

  6. O. Cazacu, B. Plunkett, Int. J. Plast 22, 1171 (2006)

    Article  Google Scholar 

  7. D. Hasenpouth, Dissertation, University of Waterloo (2010)

  8. Z. Yang, J.P. Li, J.X. Zhang, G.W. Lorimer, J. Robson, Acta Metall. Sin. (Engl. Lett.) 21, 313 (2008)

    Article  Google Scholar 

  9. X. Zhang, D. Liu, Acta Metall. Sin. (Engl. Lett.) 22, 131 (2009)

    Article  Google Scholar 

  10. H.W. Swift, J. Mech. Phys. Solids 1, 1 (1952)

    Article  Google Scholar 

  11. R. Hill, J. Mech. Phys. Solids 1, 19 (1952)

    Article  Google Scholar 

  12. Z. Marciniak, K. Kuczynski, Int. J. Mech. Sci. 9, 609 (1967)

    Article  Google Scholar 

  13. K. Hashiguchi, A. Protasov, Int. J. Plast 20, 1909 (2004)

    Article  Google Scholar 

  14. N. Boudeau, J.C. Gelin, S. Salhi, Comput. Mater. Sci. 11, 45 (1998)

    Article  Google Scholar 

  15. P. Hora, L. Tong, J. Reissner, Proceedings of the Numisheet’96 Conference (Dearborn/Michigan), (1996), pp. 252–256

  16. M.C. Butuc, J.J. Gracio, A. Barata da Rocha, J. Mater. Process. Technol. 142, 714 (2003)

    Article  Google Scholar 

  17. H.J. Bong, F. Barlat, M.G. Lee, D.C. Ahn, Int. J. Mech. Sci. 64, 1 (2012)

    Article  Google Scholar 

  18. T. Naka, T. Uemori, R. Hino, M. Kohzu, K. Higashi, F. Yoshida, J. Mater. Process. Technol. 201, 395 (2008)

    Article  Google Scholar 

  19. M. Nurcheshmeh, Dissertation, University of Windsor, (2011)

  20. W.G. Sing, K.P. Rao, J. Mater. Process. Technol. 67, 201 (1997)

    Article  Google Scholar 

  21. M.C. Butuc, Dissertation, University of Porto, (2004)

  22. P.M.C. Teixeira, Dissertation, University of Porto, (2011)

  23. R.V. Mises, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Phys. Kl. 1913, 582 (1913)

    Google Scholar 

  24. R. Hill, Proc. R. Soc. A 193(1033), 281 (1948)

    Article  Google Scholar 

  25. F. Barlat, K. Lian, Int. J. Plast 5, 51 (1989)

    Article  Google Scholar 

  26. E. Voce, J. Inst. Met. 74, 537 (1948)

    Google Scholar 

  27. M. Boba, Dissertation, University of Waterloo, (2014)

Download references

Acknowledgments

The funding support from the Portuguese Foundation for Science and Technology (FCT) via the projects PTDC/EMS-TEC/2404/2012, and PTDC/EMS-TEC/1805/2012 and by FEDER funds through the program COMPETE—“Programa Operacional Factores de Competitividade” is greatly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng-Hua Wu.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, SH., Song, NN., Andrade Pires, F.M. et al. Prediction of Forming Limit Diagrams for Materials with HCP Structure. Acta Metall. Sin. (Engl. Lett.) 28, 1442–1451 (2015). https://doi.org/10.1007/s40195-015-0344-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0344-3

Keywords

Navigation