Skip to main content
Log in

Microstructure and Dynamic Compression Properties of PM Al6061/B4C Composite

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

Aluminum 6061 matrix composite reinforced by 35 wt% B4C particle was fabricated by power metallurgy method. Then, the as-deformed composite was tested by quasi-static (0.001 s−1) and dynamic (760–1150 s−1) compression experiments. The Johnson–Cook plasticity model was employed to model the flow behavior. The damage mechanism of composite was analyzed through the microstructure observations. The results showed that the B4C particles exhibited uniform distribution and no deleterious reaction product Al4C3 was found in the composite. Al6061/B4C composite showed high yield strength, moderate strain rate sensitivity and strain hardening under the dynamic loading, and a constitutive model under dynamic compression was established based on Johnson–Cook model, and accorded well with experimental results. The microstructure damage was dominated by particle fracture and interface debonding, and the dislocation was observed in the composite at a higher strain rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. K.K. Deng, J.Y. Shi, C.J. Wang, X.J. Wang, Y.W. Wu, K.B. Nie, K. Wu, Compos. A 43, 1280 (2012)

    Article  Google Scholar 

  2. Y.Z. Li, Q.Z. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 620, 445 (2015)

    Article  Google Scholar 

  3. Y.P. Huang, W.J. Zhang, L. Liang, J. Xu, Z. Chen, Chem. Eng. J. 220, 143 (2013)

    Article  Google Scholar 

  4. B. McWilliams, T. Sano, J. Yu, A. Gordon, C. Yen, Mater. Sci. Eng. A 577, 54 (2013)

    Article  Google Scholar 

  5. P. Barick, D.C. Jana, N. Thiyagarajan, Ceram. Int. 39, 763 (2013)

    Article  Google Scholar 

  6. H. Joel, Mater. Des. 30, 323 (2009)

    Article  Google Scholar 

  7. Y.C. Feng, L. Geng, P.Q. Zheng, Z.Z. Zheng, G.S. Wang, Mater. Des. 28, 2023 (2008)

    Article  Google Scholar 

  8. C.S. Ramesh, R. Keshavamurthy, B.H. Channabasappa, A. Abrar, Mater. Sci. Eng. A 502, 99 (2009)

    Article  Google Scholar 

  9. B. Sivaiah, M. Saravanan, D. Ajay, J. Mater. Sci. Technol. 28, 969 (2012)

    Article  Google Scholar 

  10. K. Kalaiselvan, N. Murugan, S. Parameswaran, Mater. Des. 32, 4004 (2011)

    Article  Google Scholar 

  11. K.K. Deng, C.J. Wang, J.Y. Shi, Y.W. Wu, K. Wu, Mater. Chem. Phys. 134, 581 (2012)

    Article  Google Scholar 

  12. T. Varol, A. Canakci, S. Ozsahin, Acta Metall. Sin. (Engl. Lett.) 28, 182 (2015)

    Article  Google Scholar 

  13. A. Canakci, T. Varol, Powder Technol. 268, 72 (2014)

    Article  Google Scholar 

  14. J.J. Park, S.M. Hong, M.K. Lee, C.K. Rhee, W.H. Rhee, Nucl. Eng. Des. 282, 1 (2015)

    Article  Google Scholar 

  15. P. Zhang, Y.L. Li, W.X. Wang, Z.P. Gao, B.D. Wang, J. Nucl. Mater. 437, 350 (2013)

    Article  Google Scholar 

  16. W.H. Liu, Z.T. He, Y.Q. Chen, S.W. Tang, Trans. Nonferrous Met. Soc. China 24, 2179 (2014)

    Article  Google Scholar 

  17. T. Varol, A. Canakci, Powder Technol. 246, 462 (2013)

    Article  Google Scholar 

  18. K. Kalaiselvan, I. Dinaharan, N. Murugan, Mater. Des. 55, 176 (2014)

    Article  Google Scholar 

  19. G. Arslan, F. Kara, S. Turan, J. Eur. Ceram. Soc. 23, 1243 (2003)

    Article  Google Scholar 

  20. J.W. Qiao, M.Y. Chu, L. Cheng, H.Y. Ye, H.J. Yang, S.G. Ma, Z.H. Wang, Mater. Lett. 119, 92 (2014)

    Article  Google Scholar 

  21. S. Rawat, S. Chandra, V.M. Chavan, S. Sharma, M. Warrier, S. Chaturvedi, J. Appl. Phys. 116, 213507 (2014)

    Article  Google Scholar 

  22. D.N. Zhang, Q.Q. Shangguan, C.J. Xie, F. Liu, J. Alloys Compd. 619, 186 (2015)

    Article  Google Scholar 

  23. N.K. Singh, E. Cadoni, M.K. Singha, N.K. Gupta, Mater. Des. 32, 5091 (2011)

    Article  Google Scholar 

  24. J. Wang, H.W. Zhang, A.M. Wang, H. Li, Acta Metall. Sin. 48, 636 (2012). (in Chinese)

    Article  Google Scholar 

  25. M.E. Ahmed, S. Mohamed, A. Mohamed Taha, P. Heinz, J. Mater. Process. Technol. 213, 1669 (2013)

    Article  Google Scholar 

  26. T. Mukai, T.G. Nieh, Y. Kawamura, A. Inoue, K. Higashi, Scr. Mater. 46, 43 (2002)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Key Science and Technology Program of Shanxi Province, China (No. 20130321024) and the Graduate Innovation Project of Shanxi Province, China (No. B2014005). The authors are grateful to Prof. Z.H. Wang of Applied Mechanics and Biomedical Engineering, Taiyuan University of Technology, for his helpful discussion on the preparation of the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Xian Wang.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, HS., Wang, WX., Nie, HH. et al. Microstructure and Dynamic Compression Properties of PM Al6061/B4C Composite. Acta Metall. Sin. (Engl. Lett.) 28, 1214–1221 (2015). https://doi.org/10.1007/s40195-015-0315-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0315-8

Keywords

Navigation