Skip to main content
Log in

Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

The effects of pH value on crystal size and optical property of zinc oxide nanoparticles prepared by chemical precipitation method were investigated. Prepared samples have been characterized by means of X-ray diffraction, scanning electron microscopy, ultraviolet–visible spectrometer and photoluminescence spectrometer. From X-ray diffraction profile, it is found that the particle size of sample increases from 13.8 to 33 nm when the pH value of the solution was increased from 6 to 13. Microstructural study also shows that the particle size increases with pH value. Hexagonal shape of the zinc oxide nanoparticle has been confirmed by the scanning electron microscopy image. The recorded ultraviolet–visible spectrum shows excitonic absorption peaks around 381 nm. The energy gap of the prepared samples has been determined from the ultraviolet–visible absorption spectrum, effective mass model equation and Tauc’s relation. It was found that the energy gap of the prepared samples decreases with increase in pH value. The recorded blue shift confirmed the quantum confinement effect in the prepared zinc oxide samples. Photoluminescence spectrum infers that the increase in pH value shifts the ultraviolet–visible emission but not the violet and green emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M.A. Subhan, M.R. Awal, T. Ahmed, M. Younus, Acta Metall. Sin. (Engl. Lett.) 27, 223 (2014)

    Article  Google Scholar 

  2. Y. Yao, Q. Cao, Acta Metall. Sin. (Engl. Lett.) 26, 467 (2013)

    Article  Google Scholar 

  3. X. Huang, G. Li, B. Cao, M. Wang, C. Hao, J. Phys. Chem. C 113, 4381 (2009)

    Article  Google Scholar 

  4. X.H. Huang, C.B. Tay, Z.Y. Zhan, C. Zhang, L.X. Zheng, T. Venkatesan, S.J. Chua, Cryst. Eng. Commun. 13, 7032 (2011)

    Article  Google Scholar 

  5. X.H. Huang, Z.Y. Zhan, K.P. Pramoda, C. Zhang, L.X. Zheng, S.J. Chua, Cryst. Eng. Commun. 14, 5163 (2012)

    Article  Google Scholar 

  6. X.H. Huang, C. Zhang, C.B. Tay, T. Venkatesan, S.J. Chua, Appl. Phys. Lett. 102, 111106 (2013)

    Article  Google Scholar 

  7. C.Y. Luan, Y.K. Liu, Y. Jiang, J.S. Jie, I. Bello, S.T. Lee, J.A. Zapien, Vacuum 86, 737 (2012)

    Article  Google Scholar 

  8. A. Choi, K. Kim, H.I. Jung, S.Y. Lee, Sens. Actuators B 148, 577 (2010)

    Article  Google Scholar 

  9. Y.L. Wu, C.S. Lim, S. Fu, A.I.Y. Tok, H.M. Lau, F.Y.C. Boey, Nanotechnology 18, 215604 (2007)

    Article  Google Scholar 

  10. H. Hong, J. Shi, Y. Yang, Y. Zhang, J.W. Engle, R.J. Nickles, X. Wang, Nano Lett. 11, 3744 (2011)

    Article  Google Scholar 

  11. B. Kumar, S.W. Kim, Nano Energy 1, 342 (2012)

    Article  Google Scholar 

  12. J. Han, F. Fan, C. Xu, S. Lin, M. Wei, X. Duan, Z.L. Wang, Nanotechnology 21, 405203 (2010)

    Article  Google Scholar 

  13. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763 (2011)

    Article  Google Scholar 

  14. C. Wongchoosuk, S. Choopun, A. Tuantranont, T. Kerdcharoen, Mater. Res. Innov. 13, 185 (2009)

    Article  Google Scholar 

  15. R. Niepelt, U.C. Schroder, J. Sommerfeld, I. Slowik, B. Rudolph, R. Moller, B. Seise, A. Csaki, W. Fritzsche, C. Ronnin, Nanoscale Res. Lett. 6, 511 (2011)

    Article  Google Scholar 

  16. F. Yakuphanoglu, S. Mansouri, Microelectron. Reliab. 51, 2200 (2011)

    Article  Google Scholar 

  17. D.I. Son, B.W. Kwon, D.H. Park, W.S. Seo, Y. Yi, B. Angadi, C.L. Lee, W.K. Choi, Nat. Nanotechnol. 7, 465 (2012)

    Article  Google Scholar 

  18. W.K. Hong, S. Song, D.K. Hwang, S.S. Kwon, G. Jo, S.J. Park, T. Lee, Appl. Surf. Sci. 254, 7559 (2008)

    Article  Google Scholar 

  19. Z.L. Wang, Adv. Mater. 15, 432 (2003)

    Article  Google Scholar 

  20. K. Kasemets, M. Romet, A. Ivask, A. Kahru, Toxicol. Lett. 180, S22310 (2008)

    Article  Google Scholar 

  21. M. Heinlaan, A. Ivask, I. Blinova, H.C. Dubourguier, A. Kahru, Chemosphere 71, 1308 (2008)

    Article  Google Scholar 

  22. V. Aruoja, A. Kahru, H.C. Dubourguier, Toxicol. Lett. 180S, S220 (2008)

    Article  Google Scholar 

  23. J. Zhou, N.S. Xu, Z.L. Wang, Adv. Mater. 18, 2432 (2006)

    Article  Google Scholar 

  24. D.D. Guo, C.H. Wu, H. Jiang, Q.N. Li, X.M. Wang, B.A. Chen, J. Photochem. Photobiol. B 93, 119 (2008)

    Article  Google Scholar 

  25. C. Chena, B. Yua, P. Liub, J.F. Liua, L. Wang, J. Ceram. Process. Res. 12, 420 (2011)

    Google Scholar 

  26. W.J. Li, E.W. Shi, T. Fukuda, Cryst. Res. Technol. 38, 847 (2003)

    Article  Google Scholar 

  27. H. Zhang, D. Yang, X. Ma, Y. Ji, J. Xu, D. Que, Nanotechnology 15, 622 (2004)

    Article  Google Scholar 

  28. C.H. Lu, C.H. Yeh, Ceram. Int. 26, 351 (2000)

    Article  Google Scholar 

  29. S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Solar Energy Mater. Solar Cells 92, 1639 (2008)

    Article  Google Scholar 

  30. S.S. Alias, A.B. Ismail, A.A. Mohamad, J. Alloys Compd. 499, 231 (2010)

    Article  Google Scholar 

  31. X.H. Huang, Z.Y. Zhan, X. Wang, Z. Zhang, G.Z. Xing, D.L. Guo, D.P. Leusink, L.X. Zheng, T. Wu, Appl. Phys. Lett. 97, 203112 (2010)

    Article  Google Scholar 

  32. K. Sivakumar, V. Senthil kumar, N. Muthukumarasamy, M. Thambidurai, T.S. Senthil, Bull. Mater. Sci. 35, 327 (2012)

    Article  Google Scholar 

  33. S. Manafi, A. Rouhani, S. Joughehdoust, A. Salehi, in Paper Present in 2nd International Conference on Nanotechnology (NANOCON 2010), Olomouc, Czech Republic, EU, 12–14 Oct 2010

  34. K.F. Lin, H.M. Cheng, H.C. Hsu, L.J. Lin, W.F. Hsieh, Chem. Phys. Lett. 409, 208 (2005)

    Article  Google Scholar 

  35. A. Jagannatha Reddy, M.K. Kokila, H. Nagabhushan, R.P.S. Chakradhar, C. Shivakumar, J.L. Rao, B.M. Nagabhushan, J. Alloys Compd. 509, 5349 (2011)

    Article  Google Scholar 

  36. U. Koch, A. Fojtik, H. Weller, A. Henglein, Chem. Phys. Lett. 122, 507 (1985)

    Article  Google Scholar 

  37. Y. Gu, I. Kuskovsky, M. Yin, S. O’Brien, G.F. Neumark, Appl. Phys. Lett. 85, 3833 (2004)

    Article  Google Scholar 

  38. Tauc. J. (ed.), Amorphous and Liquid Semiconductor (Plenum Press, New York, 1974)

  39. K. Pushpanathan, S. Sathya, M. Jay Chithra, S. Gowthami, R. Santhi, Mater. Manuf. Process. 27, 1334 (2012)

    Article  Google Scholar 

  40. M. Jay Chithra, K. Pushpanathan, M. Loganathan, Mater. Manuf. Process. 29, 771 (2014)

    Article  Google Scholar 

  41. D.M. Fernandes, R. Silva, A.A.W. Hechenleitner, E. Radovanovic, M.A.C. Melo, E.A.G. Pineda, Mater. Chem. Phys. 115, 110 (2009)

    Article  Google Scholar 

  42. F. Ahmed, S. Kumar, N. Arshi, M.S. Anwar, B.H. Koo, C.G. Lee, Funct. Mater. Lett. 4, 1 (2011)

    Article  Google Scholar 

  43. H.A. Ahn, Y.Y. Kim, D.C. Kim, S.K. Mohanta, H.K. Cho, J. Appl. Phys. 105, 013502 (2009)

    Article  Google Scholar 

  44. A.B. Djurisic, Y.H. Leung, K.H. Tam, L. Ding, W.K. Ge, H.Y. Chen, S. Gwo, Appl. Phys. Lett. 88, 103 (2006)

    Article  Google Scholar 

  45. K. Vanheusden, C.H. Seager, W.L. Warren, D.R. Tallant, J.A. Voigt, Appl. Phys. Lett. 68, 403 (1996)

    Article  Google Scholar 

  46. K.H. Tam, C.K. Cheung, Y.H. Leung, A.B. Djurisic, C.C. Ling, C.D. Beling, S. Fung, W.M. Kwok, D.L. Phillips, L. Ding, W.K. Ge, J. Phys. Chem. 110, 20865 (2006)

    Article  Google Scholar 

  47. D. Wang, H.W. Seo, C.C. Tin, M.J. Bozack, J.R. Williams, M. Park, N. Sathitsuksanoh, A.J. Cheng, Y.H. Tzeng, J. Appl. Phys. 99, 113509 (2006)

    Article  Google Scholar 

  48. P.S. Xu, Y.M. Sun, C.S. Shi, F.Q. Xu, H.B. Pan, Nucl. Instrum. Methods Phys. Res. B 199, 286 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pushpanathan.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jay Chithra, M., Sathya, M. & Pushpanathan, K. Effect of pH on Crystal Size and Photoluminescence Property of ZnO Nanoparticles Prepared by Chemical Precipitation Method. Acta Metall. Sin. (Engl. Lett.) 28, 394–404 (2015). https://doi.org/10.1007/s40195-015-0218-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-015-0218-8

Keywords

Navigation