Acta Metallurgica Sinica (English Letters)

, Volume 28, Issue 3, pp 348–353 | Cite as

Effect of Deep Cryogenic Heat Treatment on the Wear Behavior of Carburized DIN 1.7131 Grade Steel

  • Kamran AminiEmail author
  • AliReza Araghi
  • Amin Akhbarizadeh


The effects of the deep cryogenic heat treatment on the microstructural changes, wear resistance, and hardness of carburized DIN 1.7131 grade steel were investigated. Results show that cryogenic heat treatment reduced the retained austenite and increased the carbide amount. In addition, after the cryogenic heat treatment, carbide shows a more uniform distribution, as compared to the conventionally treated ones. It was also clarified that the hardness of the cryogenically treated samples was improved, but the relative improvement decreases with the distance as the surface increases. It has been shown that the wear resistance improves due to the cryogenic heat treatment, and the predominant wear mechanism is a combination of the adhesive and tribo-chemical wear.


DIN 1.7131 grade steel Carburized steel Hardness Deep cryogenic heat treatment Tribo-chemical wear 



The authors are thankful to the Majlesi Branch, Islamic Azad University for the support of this work.


  1. [1]
    N.S. Kalsi, R. Sehgal, V.S. Sharma, Mater. Manuf. Process. 25, 1077 (2010)CrossRefGoogle Scholar
  2. [2]
    D. Collins, Heat Treat. Met. (UK) 23, 40 (1996)Google Scholar
  3. [3]
    P. Cohen, D. Kamody, Cut. Tool Eng. 50, 46 (1998)Google Scholar
  4. [4]
    D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 527, 2182 (2010)CrossRefGoogle Scholar
  5. [5]
    D. Das, A.K. Dutta, K.K. Ray, Wear 266, 297 (2009)CrossRefGoogle Scholar
  6. [6]
    J.Y. Huang, Y.T. Zhu, X.Z. Liao, I.J. Beyerlein, M.A. Bourke, T.E. Mitchell, Mater. Sci. Eng. A 339, 241 (2003)CrossRefGoogle Scholar
  7. [7]
    W. Reitz, J. Pendray, Mater. Manuf. Process. 16, 829 (2001)CrossRefGoogle Scholar
  8. [8]
    D. Das, A.K. Dutta, K.K. Ray, Mater. Sci. Eng. A 527, 2194 (2010)CrossRefGoogle Scholar
  9. [9]
    S. Gill, J. Singh, R. Singh, H. Singh, Int. J. Adv. Manuf. Technol. 54, 59 (2011)CrossRefGoogle Scholar
  10. [10]
    C.D.P. Baldissera, Open Mech. Eng. J. 2, 1 (2008)CrossRefGoogle Scholar
  11. [11]
    S. Kalia, J. Low, Temp. Phys. 158, 934 (2010)CrossRefGoogle Scholar
  12. [12]
    F. Cajner, V. Leskovšek, D. Landek, H. Cajner, Mater. Manuf. Process. 24, 743 (2009)CrossRefGoogle Scholar
  13. [13]
    P. Stratton, M. Graf, Cryogenics 49, 346 (2009)CrossRefGoogle Scholar
  14. [14]
    S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186, 298 (2007)CrossRefGoogle Scholar
  15. [15]
    A. Oppenkowski, S. Weber, W. Theisen, J. Mater. Process. Technol. 210, 1949 (2010)CrossRefGoogle Scholar
  16. [16]
    A.I. Tyshchenko, W. Theisen, A. Oppenkowski, S. Siebert, O.N. Razumov, A.P. Skoblik, V.A. Sirosh, Y.N. Petrov, V.G. Gavriljuk, Mater. Sci. Eng. A 527, 7027 (2010)CrossRefGoogle Scholar
  17. [17]
    P. Baldissera, C. Delprete, Mater. Des. 30, 1435 (2009)CrossRefGoogle Scholar
  18. [18]
    A. Bensely, D. Senthilkumar, D. Mohan Lal, G. Nagarajan, A. Rajadurai, Mater. Charact. 58, 485 (2007)CrossRefGoogle Scholar
  19. [19]
    A. Bensely, L. Shyamala, S. Harish, D. Mohan Lal, G. Nagarajan, K. Junik, A. Rajadurai, Mater. Des. 30, 2955 (2009)CrossRefGoogle Scholar
  20. [20]
    A. Bensely, S. Venkatesh, D. Mohan Lal, G. Nagarajan, A. Rajadurai, K. Junik, Mater. Sci. Eng. A 479, 229 (2008)CrossRefGoogle Scholar
  21. [21]
    M. Preciado, P.M. Bravo, J.M. Alegre, J. Mater. Process. Technol. 176, 41 (2006)CrossRefGoogle Scholar
  22. [22]
    F.J. Da Silva, S.D. Franco, Á.R. Machado, E.O. Ezugwu, A.M. Souza Jr, Wear 261, 674 (2006)CrossRefGoogle Scholar
  23. [23]
    V. Firouzdor, E. Nejati, F. Khomamizadeh, J. Mater. Process. Technol. 206, 467 (2008)CrossRefGoogle Scholar
  24. [24]
    V. Leskovšek, M. Kalin, J. Vižintin, Vacuum 80, 507 (2006)CrossRefGoogle Scholar
  25. [25]
    J. Indumathi, J. Bijwe, A.K. Ghosh, M. Fahim, N. Krishnaraj, Wear 225–229, 343 (1999)CrossRefGoogle Scholar
  26. [26]
    K.E. Moore, N. Collins, Key Eng. Mater. 86–87, 47 (1993)Google Scholar
  27. [27]
    P.F. Stratton, Mater. Sci. Eng. A 449–451, 809 (2007)CrossRefGoogle Scholar
  28. [28]
    T.K.F. Meng, R. Azuma, H. Sohma, ISIJ Int. 34, 205 (1994)CrossRefGoogle Scholar
  29. [29]
    D. Das, A.K. Dutta, K.K. Ray, Philos. Mag. Lett. 88, 801 (2008)CrossRefGoogle Scholar
  30. [30]
    A. Bensely, A. Prabhakaran, D. Mohan Lal, G. Nagarajan, Cryogenics 45, 747 (2005)CrossRefGoogle Scholar
  31. [31]
    ASTM, Standard Practice for X-Ray Determination of Retained Austenite in Steel with Near Random Crystallographic Orientation (ASTM International, West Conshohocken, 2013)Google Scholar

Copyright information

© The Chinese Society for Metals and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Kamran Amini
    • 1
    Email author
  • AliReza Araghi
    • 2
  • Amin Akhbarizadeh
    • 2
  1. 1.Department of Materials Science, Majlesi BranchIslamic Azad UniversityIsfahanIran
  2. 2.Department of Materials Science and Engineering, Shiraz BranchIslamic Azad UniversityShirazIran

Personalised recommendations