Skip to main content
Log in

Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas

  • Published:
Acta Metallurgica Sinica (English Letters) Aims and scope

Abstract

CO2 and O2 were employed as reactive gases to fabricate carbon-doped titanium oxide films using DC reactive magnetron sputtering. Microstructure, composition and optical band gap of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy, and UV–visible spectrophotometer, respectively. The results showed that carbon-doped titanium monoxide films (C-TiO) with a carbon concentration of 5.8 at.% were obtained in an Ar/CO2 mixed atmosphere. However, carbon-doped rutile and anatase (C-TiO2) with a carbon concentration of about 1.4 at.% were obtained in an Ar/CO2/O2 mixed atmosphere. The optical band gaps of C-TiO and C-TiO2 were about 2.6 and 2.9 eV, respectively. Both of them were narrower than that of pure TiO2 films. Films with narrowed optical band gap energy are promising in promoting their photo-catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. F. Han, V. Kambala, M. Srinivasan, D. Rajarathnam, R. Naidu, Appl. Catal. A 359, 25 (2009)

    Article  Google Scholar 

  2. X. Zhao, Q. Zhao, J. Yu, B. Liu, J. Non-Cryst. Solids 354, 1424 (2008)

    Article  Google Scholar 

  3. M. Takeuchi, S. Sakai, A. Ebrahimi, M. Matsuoka, M. Anpo, Top. Catal. 52, 1651 (2009)

    Article  Google Scholar 

  4. X. Chen, S.S. Mao, Chem. Rev. 107, 2891 (2007)

    Article  Google Scholar 

  5. Y. Park, W. Kim, H. Park, T. Tachikawa, T. Majima, W. Choi, Appl. Catal. B 91, 355 (2009)

    Article  Google Scholar 

  6. R. Leary, A. Westwood, Carbon 49, 741 (2011)

    Article  Google Scholar 

  7. K. Woan, G. Pyrgiotakis, W. Sigmund, Adv. Mater. 21, 2233 (2009)

    Article  Google Scholar 

  8. T. Tachikawa, S. Tojo, M. Fujitsuka, K. Kawai, M. Endo, T. Ohno, K. Nishijima, Z. Miyamoto, T. Majima, J. Phys. Chem. B 108, 19299 (2004)

    Article  Google Scholar 

  9. M. Shen, Z. Wu, H. Huang, Y. Du, Z. Zou, P. Yang, Mater. Lett. 60, 693 (2006)

    Article  Google Scholar 

  10. B.H.Q. Dang, M. Rahman, D. MacElroy, D.P. Dowling, Surf. Coat. Technol. 206, 4113 (2012)

    Article  Google Scholar 

  11. B.H.Q. Dang, D. MacElroy, D.P. Dowling, Appl. Surf. Sci. 275, 289 (2013)

    Article  Google Scholar 

  12. U.G. Akpan, B.H. Hameed, Appl. Catal. A 375, 1 (2010)

    Article  Google Scholar 

  13. D. Eder, Chem. Rev. 110, 1348 (2010)

    Article  Google Scholar 

  14. H. Kamisaka, T. Adachi, K. Yamashita, J. Chem. Phys. 123, 084704 (2005)

    Article  Google Scholar 

  15. Y. Cong, F. Chen, J. Zhang, M. Anpo, Chem. Lett. 35, 800 (2006)

    Article  Google Scholar 

  16. M.S. Wong, S.W. Hsu, K.K. Rao, C.P. Kumar, J. Mol. Catal. A 279, 20 (2008)

    Article  Google Scholar 

  17. A. Indarto, D.R. Yang, J.W. Choi, H. Lee, H.K. Song, J. Hazard. Mater. 146, 309 (2007)

    Article  Google Scholar 

  18. R.X. Li, Q. Tang, S. Yin, Tsugio Sato Fuel Process Technol. 87, 617 (2006)

    Article  Google Scholar 

  19. A. Indarto, J.W. Choi, H. Lee, H.K. Song, Environ. Chem. Lett. 6, 215 (2008)

    Article  Google Scholar 

  20. H. Irie, S. Washizuka, K. Hashimoto, Thin Solid Films 510, 21 (2006)

    Article  Google Scholar 

  21. A. Zaleska, Recent Pat. Eng. 2, 157 (2008)

    Article  Google Scholar 

  22. Y.X. Leng, J.Y. Chen, J. Wang, G.J. Wan, H. Sun, P. Yang, N. Huang, Surf. Coat. Technol. 201, 157 (2006)

    Article  Google Scholar 

  23. J. Tauc, Mater. Res. Bull. 3, 37 (1968)

    Article  Google Scholar 

  24. J.F. Moulder, W.F. Stickle, P.E. Sool, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin-Elmer, Norwalk, 1992)

    Google Scholar 

  25. L. Zhang, R.V. Koka, Mater. Chem. Phys. 57, 23 (1998)

    Article  Google Scholar 

  26. Y.X. Leng, P. Yang, J.Y. Chen, L.X. Xu, A.S. Zhao, H. Sun, J. Wang, N. Huang, Key Eng. Mater. 311, 288 (2005)

    Google Scholar 

  27. B. Dai, W.M. Gong, X.L. Zhang, A.M. Zhu, B.A. Zhang, China Environ. Sci. 19, 410 (1999)

    Google Scholar 

  28. B. Eliasson, U. Kogelschatz, IEEE Trans. Plasma Sci. 19, 1063 (1991)

    Article  Google Scholar 

  29. N. Omori, H. Matsuo, S. Watanabe, M. Puschmann, Surf. Sci. 352–354, 988 (1996)

    Article  Google Scholar 

  30. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Nos. 81171462 and 51062002), the Sichuan Youth Science & Technology Foundation for Distinguished Young Scholars (No. 2012JQ0001), and the Fundamental Research Funds for the Central Universities (Nos. SWJTU11CX078 and SWJTU12ZT08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongxiang Leng.

Additional information

Available online at http://link.springer.com/journal/40195

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, D., Wen, F., Yang, W. et al. Carbon-Doped Titanium Oxide Films by DC Reactive Magnetron Sputtering Using CO2 and O2 as Reactive Gas. Acta Metall. Sin. (Engl. Lett.) 27, 239–244 (2014). https://doi.org/10.1007/s40195-014-0049-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40195-014-0049-z

Keywords

Navigation